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SUMMARv 

This report describes work: performed on the'development of a hierarchical 

real-time algorithm for optimal three-dimensional aircraft maneuvers using 

Singular Perturbation Theory ,(SPi). New theoretical results justify and develop 

systematic methods for real-time computation of nonlinear feedback controls by 

means of SPT and provide an assessment ,of the accuracy of the resulting SPT 

control. Practical results apply SPT to obtain a real-time feedback law for 

the three-dimensional minimum time long range intercept problem for an F-4 air- 

craft model (six state, three control variable, point mass model). Nonlinear 

feedback laws are presented for computing the optimal control variables u (throttle), 

u (bank angle) and cl(angle-of-attack) as a function of target and pursuer air- 

craft states and desired terminal conditions. A real-time capability.assess- 

ment of the SPT algorithm on a TI9900 microcomputer has been performed and the 

control update rates have been determined. The storage and computational re- 

quirements of the algorithm are found to be well suited for on-board real-time 

implementation on a microcomputer. 

The accuracy of the SPT solution is analyzed and it is shown how "continua- 

tion-type" methods may be used to obtain exact optimal trajectories starting 

from the SPT solution. The advantage of using predictive terms to supplement 

the SPT feedback laws is demonstrated for the aircraft trajectory optimization 

problem. In particular, it is shown that the SPT approximation breaks down near 

the terminal phase and must be corrected by "continuation" and Generalized Mul- 

tiple Scale (GMS) methods. 

_ _----.- . . -...- ..__. .- 
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1.1 Sumnary of Contents 

_’ ‘. ;1 _. . . 

CHAPTER 1 I: ..: '; . : ,. /,. 
INTRODUCTION ..,,: :...Y. _ : 

.'I : : 

.' 
This report describes work performed on the development of a real-time 

algorithm for optimal three-dimensional aircraft maneuvers'using.Singular .' 

Perturbation Theory (SPT). The optimization problem considered is'.that of I! 
minimum time long range interception. Nonlinear feedback laws are presented 

for computing the optimal control variables u (throttle), o (bank angle) and .. 
~1 (angle-of-attack) as a function of target and pursuer aircraft states. A 

real-time capability assessment of the SPT algorithm on a T19900 microcomputer 

has been performed and the control update rates have been .determined.' The 

storage and computational requirements of the algorithm'are found to be. well " 
suited for on-board real-time implementation on a TI9900 microcomputer. ' 

,.The organization of the report is as follows. Chapter 2 presents the air- i .., 
craft model (a six-state, point mass approximation) considered in the project. ' 

The dynamic equations, constraints and numerical simulation are discussed in 

detail. Chapter 3 'formulates the optimization problem and discus'ses exact methods 

of solution--in particular, the continuation method. Chapter 4 presents the 

general theory of feedback control law computation- using SPT. The problems of 

computational efficiency and accuracy of the SPT method are discussed in detail. 
:. 

Chapter 5 applies these theoretical results to the aircraft optimization problem 

formulated in Chapter 3. We detail the computational procedures and the neces- 

sary approximations made to obtain computationally feasible solutions. Chapter 

6 describes the final real-time algorithm and presents numerical“examples for 

various flight trajectories. In addition, we present computation, times'for the 

algorithm based on the capabilities of the TI9900 microcomputer.' Conclusions 

are.presented in Chapter 7. 
.,. 

1.2: Previous Work on Aircraft Trajectory Optimization 

.. In this section, we trace the historical development of techniques for 

flight path optimization of high performance aircraft. We will first discuss 

the minimum-time problem in,the vertical plane which has been under consideration 
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for over 35 years and then discuss the treatment of the horizontal plane problem 

and the three-dimensional problem which has occurred only recently. -Finally, 

we sketch previous work in aircraft trajectory optimization using singular 

perturbation theory. 

Vertical-plane, minimum-time problem- 
.' 

Before the development of supersonic aircraft, trajectory optimization was 

performed using the "quasi-steady" approximation in which the accelerations of 

the aircraft were neglected. Towards the end of World War II 'with-the emergence 

of higher. performance aircraft, this'assumption led to results which were less' 

and less accurate. The high acceleration capability of the aircraft particularly 

along the flight path could no longer be neglected. Kaiser (1944) considered 

the total energy of the aircraft, expressed as energy height, to obtain a mini- 

mum-time climb path which took into account the longitudinal acceleration of the 

jet interceptor. The solution could be obtained graphically in terms of energy 

without resorting to the use of the Calculus of Variations. This graphical, 

approach was later used by Lush (1951), Kelley (1952), Fuhrman (1952), Garbell 

(1953),, and Lush (1956) to obtain minimum-time and minimum-fuel paths with free 

boundary conditions. Rutowski (1954) developed a graphical optimization tech- 

nique which yielded the theoretical Rutowski energy climb path. 

Much of the initial work in obtaining numerical results using the indirect 

method of the Calculus of Variations was done at RAND around 1949-1951. Miele 

(1950, 1955a, 1955b, 1958, 1962) was active in the field of flight path optimi- 

zation for over ten years during whi:ch he introduced a new method of solving 

the minimum-time climb problem using Green's theorem. This method is applicable 

only to a restricted class of problems which can be formulated in a linear form 

in two transformed variables. Beginning in about 1954, M;ele (1959a,b) and 

Cicala (1955a,b) individually and in .collaboration developed the formulation of 
.' 

the fixed end-point, vertical plane problem in terms of the Bolza form of the 

Calculus of Variations. Here they considered accelerations normal to and along 

the flight path as well as control inequality constraints and state equality 

constraints. Numerical results were obtained only for simplified cases. Kel- 

ley (1959) studied zoom climbs including consideration of both normal and Tongi- 

tudinaPaccelerations and discontinuous ,thrust due to afterburner burnout. 

.Bryson (1966) considered the minimum-time interception of a non-maneuvering 
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target by utilizing the technique of reducing the state space by the use of 

dimensionless variables. 
'_ ,' 

In the 1960's much emphasis was placed on the development of gradient 

algorithms as it was recognized that digital computers were necessary to solve 
flight path optimization problems. The first successful programs were developed 
by Bryson (1962) and Kelley (1962). With this technique, an optimum flight-path 
is determined by comparison of an existing trajectory with its predecessors. 

The method can be made as exact as the model of the aircraft which is being 

simulated. In general, however, solutions are slow to converge, and will often 
converge on a local minimum rather than the true minimum. Balakrishnan (1969) 

proposed a modified gradient approach designed to minimize the large computation 

times. 

Development of numerical techniques for the integration of Euler-Lagrange 

equations was accomplished by Heerman (1964) and Vincent (1966). The results 

are generally in the form of a flooded region of trajectories where some re- 
finement is required to arrive at the desired solution. Programs of this type 

are characterized by instabilities and extreme sensitivity to particular para- 

meters. 

There was also a renewal of interest in the energy-state approximation. 

Boyd and Christie (1965) worked with the concept of energy management and de- 

veloped operational guidelines without resorting to an indirect method of the 

Calculus of Variations or gradient solution. Bryson, Desai and Hoffman (1969) 

presented a fairly complete treatment of the energy-state approximation and 

applied it to a series of vertical-plane flight path optimization problems to 

a given range. Other examples of recent applications of the energy-state ap- 

proximation to the vertical plane problem are by Meier et al. (197C), Schultz -- 
and Zagalsky (1972) and Parsons (1972). Parsons considered the minimum-time 

transit of a supersonic aircraft to a point which is far enough away that there 

is a central cruise arc at the maximum Mach number of the aircraft. 

Sederstrom (1972) presents results of energy management flight tests con- 

ducted with an F-8 aircraft. He showed that it was possible to calibrate an 

individual aircraft and optimize its minimum-time, energy-climb performance on 

the basis of a relatively simple procedure. Sederstrom et al. (1971) also -- 
consider the problem of displays and pilot workload by developing a hybrid simu- 
lation of the F-4 aircraft following optimal flight paths obtained using energy 
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management techniques. Another set of results of flight tests conducted on the 

F-8D airplane are presented by Capt. Bryan and Allison (1972). Here three 

flight. path schedules were compared; an optimum energy flight path, a flight : ._. 
manual fljght path and an optimum energy flight path schedule based on nominal 

aerodynamic and performance data for the F-8D airplane. More recently, Barman : 
and Erzberger (1976) considered the problem of determining optimum trajectories 

with a'range constraint using the energy-state method for.short-haul subsonic 

aircraft. Uehara, Stewart and Wood (1978) investigate minimum-time loop man- 

euvers, i.e., ,maneuvers in the vertical plane in which the flight path angle 

increases monotonically from 0 to 360 degrees. 

Horizontal-plane, minimum-time problem- 

The minimum-fuel problem was considered in the initial work in determining 

optimum flight paths in the horizontal plane. Connor (1967) studied the sin- 

gular arc portion of the minimum-fuel path at constant altitude and Bryson and 

Lele (1969) presented the full solution of this problem. Final position con- 

straints were not included in this work. Erzberger and Lee (1971) considered 

the constant-altitude, constant-velocity minimum-time solution to a point and 

to a line.- Hedrick and Bryson (1971a,b) investigated constant-altitude, variable- 

velocity, minimum-time paths to a final velocity and heading without final 

horizontal position constraints. Parsons (1972) considers constant-altitude, 

variable-velocity, minimum-time flight paths to a final point or onto a final 

line when the flight path is long enough that a cruise period at maximum velocity 

or a straight bank angle chatter arc is present in the flight. Hoffman and 

Bryson (1971) considered the case when the cruise period does not exi 

Three-dimensional, minimum-time problem 

In 1970, Kelley and Edelbaum (1970) considered three-dimensional 

time flight paths using the energy-state approximation and suggested 

st. 

, minimum- 

an asymp- 

totic expansion procedure based on singular perturbation theory to correct the 

solution near altitude transitions. Horizontal plane final position constraints 

were not considered and numerical results were not presented. Kel ley (1971a) 

further developed the asymptotic expansion approach suggested above. N 

results for minimum-time paths without final position constraints were 

sented bv Kelley and Lefton (1972a) and Kelley (1973c). 

Hedrick and Bryson (1971, 1972) also treated the three-dimensional 

umerical 
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minimum-time problem without horizontal-plane final position constraints dur,ing 

this.same period.. Hedrick obtained mOre complete numerical resul,ts, than :Kel.ley - 
and associates but considered less realistic flight envelope constraints.'.,:! 

Others have considered specific.three-dimensional turns with final position 

constraints without attempting to .provide a generalcharacterization of these 

maneuvers, e.g., Stein et al. (1967), Cambell and Hartsook (1972). ,Parsons and -- 
Bryson (1972) use the energy-state approximation to consider three-dimensional, 

minimum-time .flight paths to a final point or onto a final line when the flight 

path is long enough that a central cruise period at maximum Mach number. is 

present in the flight. Hoffman and Bryson (1973) extend Parsons' work ,to,con- 

sider techniques for real-time on-line optimum flight path control using th-e I. 

reduced-order model obtained from the energy-state approximation. ,They also 

studied short-range maneuvers where the cruise period is absent. 

Singular Perturbation Theory (SPT) app,roximation of optimal aircraft trajectories 

In a series of papers appearing in the early seventies, Kelley applied the 

asymptotic :expansion methods of singular perturbation theory to aircraft op- 

timization problem. By considering boundary layer correction' terms he was able 

to improve the usual reduced order energy approximation in the regions'where 

instantaneous altitude transitions occur. In the first paper of the series, 

Kelley and Edelbaum (1970) considered three-dimensional maneuvers, both energy 

climbs and:energy turns. In subsequent papers, Kelley (1970a) considered-the' 

general theoretical problem for a two-state system, and Kelley (1970b) applied 

the method to horizontal plane control of a rocket in a vacuum. The papers, ' 

Kelley (1971a) and Kelley and Lefton (1972a), consider energy state models with 

turn. More generally, Kelley (1971b, 1973c) considers three-dimensional man- 

euvers with variable mass. Note that Kelley (1973c) gives a detailed account' 

of the singular perturbation approach to aircraft problems and includes most'of 

the earlier, work in this. paper. 

More recently, other investigators have applied asymptotic techniques to 

aircraft trajectory optimization. Ardema (1976) applied the method of matched 

asymptotic expansion, one of many singular perturbation methods, to the vertical 

plane minimum time-to-climb problem. He calculated the zero and first order 

SPT approximations and compared them to the energy state approximation and the 

solution obtained by the method of steepest descent (which one could assume to 
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be optimal). He found that the first-order SPT approximation was close to the 

steepest descent solution and SPT required much less computation than the latter. 

In a,later paper Ardema (1978) considered a general third order nonlinear SPT 

problem and studied the occurrence of singular arcs in the solution. Breakweli 

(1977, 1978) considered the vertical plane, minimum-time problem where drag D 

is much less than lift L and defined a natural perturbation parameter E=D/L. 

He also considered the occurrence of singular arcs in the solution. 

Note that the work mentioned so far only applies SPT to off-line aircraft 

trajectory optimization. In a recent series of papers Calise has applied com- 

plete time scale separation to obtain feedback controls by means of SPT. 

Aggarwal, Calise and Goldstein (1977) consider the vertical plane, minimum-fuel 

problem for a transport aircraft. Calise (1977a, 1978b) considered the vertical 

plane minimum-time problem. Calise (1977b) considered feedback control of a 

missile in the horizontal plane. Calise (1978a) considered the vertical plane 

problem to minimize a weighted combination of fuel and time for both transport 

and missile. 

This project has emphasized on-line trajectory optimization for aircraft 

control. The theoretical results (Chapter 4) address the problem of applying 

SPT to obtain feedback controls which can be computed on-line and stored on- 

board. We justify and extend the method of complete time scale separation of 

Calise (1978b) and indicate when the algorithm yields a well-defined control 

law. (See Subsection 4.3.2 and Appendix 4.2.) We also indicate methods for 

applying SPT approximations when there is no complete time scale seapration 

(see Subsections 4.3.3 and 4.3.4), i.e., the use of suboptimal solutions of the 

slow reduced order and linearization of the fast subproblem around the reduced 

order solution. Note that when the linearized fast subproblem itself exhibits 

time scale separation, one can apply the Generalized Multiple Time Scales (GMS) 

methods of Ramnath and Sandri (1969) to obtain further computational efficiency. 

Ramnath and Sinhu (1975) applied this method to determine space shuttle re-entry 

paths requiring minimum mass of heat shielding. In addition, we consider the 

state space dependence of the accuracy of the SPT approximation and the break- 

down of SPT near the terminal target (see Section 4.4). 

The practical results (Chapters 5 and 6) apply SPT to obtain a real-time 

feedback law for the three-dimensional minimum time-to-interception problem for 

a realistic aircraft model. The six-state point mass model uses real data for 
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the aerodynamic coefficients and realistic controls and constraints (see 

Chapter 2).. In addition, w&.obtain the $PT algorithm for.this.modej and assess 

its real-time capability on a TI9900 Microprocessor .(see Chapter .6). 
.",,;'./' 
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AIRCRAFT MOdEi " 
.,' I 

. . 

2.1 Introduction- 
I 

In this chapter we desdribe the aircraft model used i,n this 'project: In 

surnnary, this model assumes a point mass approximation--that is, state va,riables .:. 
describing the vehicle,attitude'are either omitted or used'as control variables. 

This assumption implies, of course, that the characteristic time constants of 
I. 

the control system are significantly less than the time constants of the motjon; 

that is, the attitude necessary for generating a certain command.force or moment 

is effectively achieved instantaneously. Another ass.umption is that the earth's 

surface is flat, and provides the initial reference system. Next, it is assumed 

that the vehicle thrust vector is always parallel to the zero lift direction. 

According to Parsons (1972) this assumption is not a.serious restriction. Fin- 

ally, vehicle mass is assumed constant. The resu1tin.g six-state equations of 

motion are presented in Section 2.2. This section also presents the 'state and 

control constraints for the model. 

The aircraft whose characteristics were used in this project was an early 

version of the F-4 used by Bryson, Desai and Hoffman (1969) and as Airplane 1 

by Bryson and Parsons (1971). Section 2.3 describes the numerical treatment of 

the aerodynamic coefficients characterizing this plane. In addition, this sec- 

tion describes the atmospheric model used and the computer simulation of the 

aircraft dynamics. 

2.2 Aircraft Equations of Motion and Constraints 

The system of equations for the aircraft presented below is typical of the 

point mass approximation models encountered throughout the literature. There- 

fore, the derivation shall not be repeated here. The interested reader may 

refer to Parsons (1972) from whose work we have chosen our aircraft model. 

The point mass model together with our other assumptions mentioned in' the 

introductory Section 2.1 result in a six-dimensional system of first order 

nonlinear differential equations: 
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(2.1) ;( = v cos~cosy 

(2. 2) j, = V s jnfjcos$. I. -;;‘.,..;, .,:.: ., ;-~7:‘:~~c~.‘::r ;:. 
'I:.., . 

(2.3) h = V siny '!.. _ > .;,: 
.; . _ 

I-,-: . . . 

(2.4) i = T COSa - i - mg siny 

:, .- 

(2.5) 
B = (L + T sincr)sina 

mV cosy 
: ,.. ._ ,‘!! :” ~‘~:I’:~ -...“?!!~,‘,>:i 

;. i.* .. '. ,?. ;Yi. 
T .'.. . . " 

'-..>A 
',.I 

(2.6) ; = 
'(L + T sinci)cosa - mg cosy 

2 .;-.--. E ,1 h., : L :- , : '. 
mV 

In equations (2.1) - (2.6), the state variables are x,.y'i h, V, 6, y which rep- 

resent respectively the horizontal position (x,zy)-',in.the:,flat earth's plane, .: 
the height h above a fixed ground height, the magnitude-.V'.of the velocity, the 

heading angle 6 in the horizontal plane of the earth and the flight path angle y. 

The reader should refer to Figure 2.1 to see the geometric relation between the 

state variables. The parameters T, D and L are respectively the thrust, drag 

and lift forces on the plane. In terms of aerodynamic coefficients these are 

given as follows: ;. .-. :. .' : 

(2.7) T = U Tmax(M,h) 

where Tmax is th‘e,maximum thrust for height h and M'ach number M. Mach number 

is related to the velocity V by, the equation . . 
, : ._ .I,, ':.,' . 

(2.8) V = c(h)M . ,. 

where c(h) is the speed of'so'und at ,a?titude.h. y-;' _ ; 
I- 

(2.9) 
._ ., : 2. ,, . 

D+ "6 + jj&$ : , 
" .':' .. ?<.TT;.&,,$:"'~: 

(2.11) Lcr = CL qs 
a 

(2.12) Do = CD~~qS : '.' : '.‘ : i. :_ ,. . . . 
0 

(2.13) q =%pV2 
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In the above equatdons (2.9)- (2.13); CL is the lift coefficient, C 
DO 

is the 
a 

zero lift drag coefficient and nis the..aerodynamic efficiency factor. The 

parameters CL , CD and n eachdepend-only on Mach.number M. The parameter S 

denotes a chaFacte%stic.surface area (49.239 m2 for this aircraft) and p(h) 

is the density at altitude h. 

The parameters u, CY and o are considered control variables. The control u 

represents throttle value and varies between 0 and 1, a denotes angle of attack 

and CT denotes the bank angle of the plane. See Figure 2.1 for an illustration 

of the geometric relationship of c1 and CT to the state variables. 

In addition to the dynamic equations (2.1)- (2.6), we have the state and 

control constraints 

(2.14) '0 SC1 Ias 

(2.15) OlU<l 

(2.16) 0 5 V I V,,,(h) 

(2.17) -amax 5 u 5 timax 

(2.18) hmin I h 

where as is the stall value for the angle of attack (assumed 12" in our problem) 

and omax is the maximum bank angle (assumed about 76" to correspond to a maxi- 

mum normal load of 4g during horizontal turns). These constraints represent 

structural and controllability limitations on the aircraft. 

2.3 Numerical, Simulation of Aircraft 

As we mentioned before in Section 2.1, the aircraft whose characteristics 

were used in this project is an early version of.the F-4 as used by Bryson, 

Desai and Hoffman (1969) and as Airplane 1 by Bryson and Parsons (1971). The 

aerodynamic coefficients for this aircraft are tabulated as a function of Mach 

number and the maximum thrust as a function of Mach number and altitude in 

Appendix 2.1. The weight of the aircraft was taken as constant at 1.5569x lo5 N 

and the aerodynamic reference area S is 49.239 m2. The two atmospheric variables 
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required in the simulation are sonic speed and air density., These are indicated 

in Appendix 2.1 as functions of altitude. 

The input data describing the atmosphere and the example aircraft as pre- 

sented above is in tabulated form. A continuous numerical representation of 

this data is essential for the simulation and the associated partial derivatives 

are required for the solution of the optimization problem. Therefore, the data 

was modeled using cubic spline fits which provided continuous values of the 

data with continuous first and second derivatives. These spline fits are de- 

scribed in more detail as follows: 

(a) Sonic Speed c. The sonic speed as presen.ted in Table 3 in Appendix 2.1 

is constant above an altitude of 1.2192~ lo4 m. Hence a cubic spline fit was 

constructed for values of height less than the above with an end-condition of 

zero first derivative at this height. For a value of the first derivative at 

0 m, a natural* spline fit was constructed and the value of this derivative 

obtained was used as the end-condition at 0 m to construct the chosen cubic 

spline fit. 

(b) Atmospheric Density p. Since no special end-conditions were required 

to model atmospheric density, a natural spline fit was constructed. 

(c) Aerodynamic Coefficients C 
Oo' a 

-CL d. As in Table 1 of Appendix 2.1, 

the aerodynamic coefficients are constant for MI 0.8 which gives end-conditions 

at M=0.8 of zero first derivatives. The problem of end-conditions at M= 2.0 

was solved by constructing natural spline fits which provided values for first 

derivatives at M=2.0 that were used to obtain the required spline fits. 

(d) Maximum Thrust Tmax. Table 2 of Appendix 2.1 shows maximum thrust as 

a function of two variables: altitude and Mach number. To numerically model 

this data so as to have available continuous values with partial derivatives, 

a natural bicubic spline fit was constructed. The natural fit provides zero 

second partial derivative with respect to Mach number along the altitude boun- 

dary, and at the corners zero mixed second partial derivatives. Some inter- 

polated values are presented in Table 4 of Appendix 2.1. Note that the maximum 

velocity constraint does not allow maximum thrust values at low altitude and 

high Mach number. 

The dynamic simulation of the aircraft was carried out by numer ically 

second *A natural spline fit provides continuous f 
derivatives at the end-points. 

i rst derivatives and .zero 
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integrating the differential equations (2.1)‘- (2.6) using a second-grder Adams- 
Bashforth integration routine. . 

.I .- !I{: ,,. .' 
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APPENDIX 2.1 :<I-‘,_‘: ..“:‘,;,?:“‘. ‘,.:;:i ;;;;q.; ,:;.-.; ,’ 

CHARACTERISTICS OF EXAMPLE AIRCRAFT AND ATMOSPHERE MODEL 

Table 1 
Aerodynamic Coefficients for F-4 Model as Functions of Mach Number 

M 
cDO cL u 

I 0.8 0.0130 3.44 0.540 

0.9 0.0140 3.58 0.750 
1.0 0.0310 4.44 0.800 
1.1 0.0388 3.88 0.830 
1.2 0.0410 3.44 0.850 
1.3 0.0408 3.20 0.875 
1.4 0.0390 3.01 0.890 
1.5 0.0372 2.84 0.910 

1.6 0.0360 2.68 0.920 

1.7 0.0354 2.55 0.930 

1.8 0.0350 2.44 0.940 

1.9 0.0348 2.34 0.945 

2.0 0.0346 2.25 0.950 



-... 
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Table 2 
Maximum Thrust for i-4 Mode,l.as Function.of Mach'Number and Altitude' 

. 

.o ,. 
1.524 

3.048 

4.572 

6.b96 
7.620 

9.144 
10.668 

12.192 ( 
13.716 
i5.i40 

16.764 
18.288 

19.812 
21.336 

0.4 ,O :6 

- 

0.8 
.’ 

- ., 

1.0 1.2 

12.60* 13.70 15.35- ‘i6.86 16.06 

11.21 12.10 13.48 15.26 16.90 

9.74 10.59 11.83 13.52‘ 15.52 

8.32 9.12 10.36 11.92 13.92 

7.07 7.70. 8.81 10.36 12.14 

5.96 6.54 7.47 8.81 10.50 

4.98 5.47 6.27 ‘7.47 8.94 

4.05 4.54 5.20 6.18 7.34 

3.25 3.60 4.18 4.98 5.96 

2.i4 2.89 3.3% 3.96 4.76 

1.96 2.18. 2.49 3.02 3.68 

1.42 1.65 1.87 2.27 2.85 

0.98 1.11 1.33 1.65 2.05 

0.58 0.71 0.85 1.07 1.33 

0.31 0.40 0.49 0.62 0.76 

*all values times 10” N 

T 

1.4’ 

16.28 
17.13 

16.06 
14.06 

12.50 

10.77 

8.81 
-7.21 
5.74 
4.45 

3.43 

2.54 

1.69 
0.98 

Table 3 

Sonic Speed and Density as Functions of Altitude 

1.524 334.4 

.3.048 328.3 
4.572 322.2. 

6.096 316.1 

T.620 309.7 

9.144 303.2 ’ 10.668 296.6 

Air Density 

Kgk/m3 

1.225 

1.055 
0.9045 
0.7710 

0.6525 

0.5489 
O&83 

0.3968 

\ltitude 

lo3 m 

12.192 

13.716 
15.240 
16.764 
18.288 

21.336 
24.384 

---,.--- .-.--.-- 

1.6 1.8 

-. ._. 

17.21 - 
15.88 - 

14.23 15.39 

12.50 13.83 

10.40 11.70 
8.59’ 9.65 

6.81 7.70 

5.29 5.92 

4.09 4. ‘54 

3.02 3.38 

2.05 2.31 

1.29, 1.38 

Sonic Speed 

m/set 

295.1 

295.1 
295.1 
295.1 
295.1 

295.1 
295.1 

2.0 

12.,63 
10;45 
8.36 

6.41 

4.85 
3 ..60 

2.40 

1.42 

KQm/m3 

-0.3015 

0.2371 
0.1865 
0.1466 

0:1153 

0.07133 
0.04410 
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Table 4 

Maximum Thrust Interpolated Using Bicubic Splines 

1.1 

6.64 
6.64 
6.32 
5.52 
.4.55 
.3.66 
.2.86 
.2.05 
.1.25 
.0.41 
9.61 
8.85 
5.18 
7.43 
6.72 
6.05 
5.43 
4.85 
4.31 
3.83 
3.34 
2.94 
2.54 
2.18 
1.82 
1.51 
1.20 
0.93 
0.67 

.6.64 

.6.64 

.6.37 

.5.84 

.5.08 

.4.10 
!3.08 
12.23 
11.48 
10.68 
-9.83 
8.90 
8.05 
7.25 
6.54 
5.87 
5.25 
4.63 
4.05 
3.56 
3.11 
2.71 
2.27 
1.87 
1.51 
1.16 
0.85 

.6.28 

.6.86 
L7.13 
16.81 
r6.06 
15.03 
14.06 
13.26 
12.50 
11.70 
LO.77 
9.79 
8.81 
7.96 
7.21 
6.45 
5.74 
5.07 
4.45 
3.91 
3.43 
2.93 
2.54 
2.09 
1;69 
1.33 
0.98 

1.5 7- 

1 
1 
1 
1 
1 

/ 
, 
1 
1 
I 
1 
1 
I 
1. 
i - 

1.6 1.7 

f 
/ j 

.- 

1216: 
11.5: 
10.4! 
9.31 
8.3( 
7.31 
g.;; 

4:8! 
4 :2: 
3.6( 
2.9I 
2.4( 
1.8; 
1,4: 

.5 .6 .7 .8 .9 1.0 1.2 
\ 

M 
:103m 

: 762 
1: 524 
2.286 
3.048 
3.810 
4.572 
5.334 
6.096 
6.858 
7.620 
8.382 
9.144 
9.906 

10.668 
11.430 
12..192 
12.954 
13.716 
L4.478 
15.240 
16.002 
16.764 
17.526 
18.288 
19.050 
19.812 
zo.574 
Z1.336 

.4 

12.6; .3.12 
11.92 .2.37 
11.21 .I.61 
10.50 .0.85 
9.74 .o. 14 
9.03 9.39 
8.32 8.67 
7.70 8.01 
7.07 7.34 
6.49 6.76 
5.96 6.23 
5.47 5.69 
4.98 5.20 
4.49 4.72 
4.05 4.27 
3.65 3.83 
3.25 3.43 
2.89 3.03 
2.54 2.71 
2.22 2.36 
1.96 2.05 
1.69 1.7e 
1.42 1.56 
1.20 1.29 
0.98 1.02 
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CHAPTER 3 

THE OPTIMAL CONTROL PROBLEM AND EXACT, ITERATIVE METHODS OF.SOLUTION 

“! 

_. ” i Iritroduction 

In this chapter we describe the trajectory optimization problem considered 

in this project and some exact, iterative methods for its solution. We wish 

% draw particular attention to the continuation methods described in Subsection 

:;.3.3. These methods seem to offer very efficient trajectory optimization al- 

.;or,ithms, although they are unfortunately not yet fast enough for on-line optimal 

r:::ntrol of aircraft. 

The optimization problem chosen for this problem was the minimum time in- 

%rception problem. That is, the problem was to minimize the total trajectory 

time from a given initial point in the six-dimensional state space to a given 

?inal point. In Section 3.2 we describe the mathematical formulation of this 

b;Jtimization problem. 

7.2 Formulation of the Minimum Time Interception Problem ---- 
iiere LJ~ formulate the minimum time interception problem as in Bryson and 

!,.; (l%sj or -in Athans and Falb (1966). First, we have a dynamic system 

(2.3) 2 = f(x,u) 

!! +:iP _ ';;_ denotes the state vector and u denotes the control variable. We have 

underlined the state & and control u to distinguish them from the horizontal 

position x and the throttle control u. In later sections we will omit the 

underlines when the context makes clear which case is meant. In our case 

: = !e,.!;,h,V,Br*y) and i= (u,a,o). Equation (2.1) is the vector representation . 
.Y~T tKe sj'stem (2.2.1)- (2.2.6). 

In addition to the dynamic equations (2.1) there are inequality constraints 

c(x,u> I o_ -- 

,~iiich must be satisfied at each time of the trajectory. Equation (2.2) is the 



vector representation (hence Q rather than 0) of the state and control con- 

straints given in (2.2.14)- (2.2.18). 

At the initial time to an initial state x0 is specified, " 

, (2.3) x(to) = 250 
. . : . . ‘. 

where x0= (xO,yO,hO,VO,BO,yo). .Sim.ilarly, at the final time tf a final state 
. 

xf JS specified,, .: 

(2.4j 
. : Ilbf) = Xf 

’ where xf = (xf,yfhf,Vf3Bf,yf). Note that the initial time is fixed but the final 

time need not be. 

Equations (2-l)- (2.4) denote constraints on the possible trajectories of 

2, u. The optimization problem is to minimize the cost of the trajectory where 

the cost has the form 

(2.5) J(u) = L(x,u) dt 

For the minimum time problem L is simply the constant, 

(2.6) L(x,u) = 1 

Let us say that a control trajectory I! is feasible if u together with its 

corresponding state trajectory x, found from integrating (2.1) with initial 

conditions (2.3), satisfies the constraints (2.2) and the terminal condition 

(2.4). The optimal control problem is to find a feasible control trajectory 

u* such that 

(2.7) J(u*)‘ I J(y) 

.for all other feasible controls U. Solutions of the optimization problem are 

usually found by solving the Euler-Lagrange first order necessary conditions. 

These conditions are expressed in terms of a Hamiltonian function defined 

(2.8) H(x,X,u) = Lh!) + XTf(x,u) 
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where h denotes a vector of the same dimension as 3 and AT denotes its transpose. 

In our case, H is given by 

(2.9) H=l+ XXV cosf3cosy + hyV sinBcosy 

+ AhV siny + hV T coscx - D - mg siny 
m 1 

+ x (L + T sina)cosu - mg cosy 
B 

(L + T sincl)sina + h 
mV cosy 1 [ Y mV I 

The Euler-Lagrange equations are a system of differential equations in x and A, 

namely 

(2.10) $ = f(x,u) 

(2.11) 2 = G(x,A) 

For optimal u*, x* there is an optimal A* such that (2.10), (2.11) are satisfied 

and such that 

(2.12) H(x*,o*,h*) = min H(x*,u,X*) 
u 

at all times. This relationship is known as the minimum principle (see Athans 

and Falb (1966)). 

In principle we can solve (2.12) for u in terms of x, h and eliminate IJ 

from (2.10), (2.11). The result is a system of differential equations in x and 

X only, 

(2.13) $ = F(z,X) 

(2.14) $ = G(&,A) 

with mixed initial and boundary conditions on 3 from (2.3) and (2.4) rather than 

initial conditions on both x and A. Thus, (2.13), (2.14) with boundary con- I 

ditions (2.3), (2.4) is a two-point boundary value problem (TPBVP). Many solu- 

tion techniques solve the original optimization problem by solving this TPBVP. 

Note that when tf is not specified, we obtain the extra condition 
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(2.15) H(&*,X*,u*) = 0 

at all times. This extra condition can be used to find tf. 

3.3 Exact, Iterative Solutions of ,the TPENP 

Whether the full system solution or the solution to one of'the reduced- 

order formulations of the problem is being sought, a numerical solution to the 

TPBVP is necessary. Order reduction is usually achieved through the application 

of Singular Perturbation Theory (SPT). For a system which is considered 

"stiff" --that is, the time scales of some of its state variables are signifi- 

cantly faster than those of the remainder-- the approximation arising from a 

reduction in order can be made to be a reasonably good one, if done judiciously. 

Assuming, then, that the system has been reduced to a TPBVP, the solution 

procedures considered in this project fall into three general categories: 

(i) Steepest Descent (Gradient) Methods 

(ii) Quasilinearization Techniques 

(iii) Continuation Methods Using a Parameter 

These methods will be discussed in varying detail in the following sections. 

3.3.1 Steepest Descent Techniques 

These are the most widely used methods, and their strengths and weaknesses 

are well known. Inequality constraints are typically handled by using penalty 

functions. There are often convergence problems, due to the presence of state 

variable inequality constraints and singular arcs. This is because of the ab- 

sence of control variables in the inequality constraints or in the gradient of 

the cost function. It is expected that some of these numerical problems may be 

alleviated by using a "generalized gradient method" as described in Mehra and 

Davis (1972). Briefly, this method uses the constraints to dictate, at each 

step, which of the entire set of control and state variables are to be selected 

as control variables for the next step. The gradient of the cost function with 

respect to the independent variables , called the generalized gradient, is then 

computed by solving a set of equations similar to the Euler-Lagrange equations. 

Directions of search are found using gradient projection and the conjugate 

gradient method. The procedure, then, is based on the idea that there is no 
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real mathematical distinction in the use of u(t) or elements of u(t) and x(t) 

as the independent or manipulative variables of the system ;(= f(x,u). Criteria 

for selecting the independent set include: any variable which lies on the con- 

.straint boundary should be included in the set; choosing some. of the state 

variables as the independent variables often improves the rate,of convergence; 

the independent set must be chosen so as to retain recursiveness to avoid in- 

verting large matrices. 

The details of this technique are in Mehra and Davis (1972). It is an- 

ticipated that algorithms based on steepest descent, even when applied to the 

reduced TPBVP's, may be too slow for real time solution of any of the basic 

problems. This method will be useful, however, in developing the full-system 

solution. 

3.3.2 Quasilinearization Methods 

Basically, these methods revolve around doing a linearization around a 

zero-order solution. Such a solution would arise from setting the "approxima- 

tion parameter," E, to zero, as is done in SPT; or, as is done in the case of 

continuation methods (next section), E is set to some co, possibly zero, for 

which the solution is readily obtained. The appeal of quasilinearization tech- 

niques lies in the fact that they are far less sensitive to changes in the ini- 

tial conditions than the shooting continuation methods described in the next 

section. Thus, in advancing the parameter E from &O or 0 to its "real" value, 

generally 1, some combination of techniques based on quasilinearization method- 

ology and continuation theory may be developed. This will hopefully allow the 

exploitation of the advantages of both schemes, utilizing one where the other 

is weak. One anticipated disadvantage of the quasilinearization-continuation 

approach is the computational effort required to step the parameter E along 

to its final value. 

Basic references on the theory of quasilinearization are Bellman and 

Kalaba (1965), Dyer and McReynolds (1970), Polak (1971), and Keller (1968). As 

in Subsection 3.3.1, it is anticipated that inequality constraints can be 

handled by means of penalty or barrier functions. This should be true both for 

this section and the following one. 

Quasilinearization techniques are cast in the form of Newton-Raphson 
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problems in Polak (1971). Because of the comparison of this form to the con- 

tinuation methods of the next section, Polak's algorithms will be presented 

here. The outline in Dyer and McReynolds (1970) is presented more directly in 

terms of the calculus of variations problem in optimal control. 

For quasilinearization, g is augmented by a third vector element. Suppose 

we have a differential equation 

(3.1) g = f(x,t) 

with initial and final boundary conditions 

(3.2) go(x(to)) = 0 

(3.3) !qq) = 0 

Note that in the control problem, x in (3.1) would actually include both the 

state 21. and the adjoint 1. That is, x= (x,X) and (3.1) is given by (2.13), 

(2.14). Let ?j(x,,x(~)) be the function defined by 

/ 

t 
(3.4) 4(x,d+)Ht) = f() + f(x(s),s)ds - x(t) 

t0 

and define g from go, gf and g so that 

(3.5) g(x,a+)~ = 

Thus, g maps the pair (x0,x(*)) into the pair (yo,y(=)) where yo= (go(x(tO)), 

gf(x(tf))) and y(t)=?j(xO,x(=))(t). In the following, let L denote the linear 

space of pairs (x,,,x(*)) where x0 is a vector and x(=) is a piecewise contin- 

uously differentiable function of t. Then g is a continuously differentiable 

map of L into itself. We will assume that [ag(z)/az]-' exists for all z in a 

sufficiently large subset of L, where z= (x0,x(*)). With this assumption, the 

Newton-Raphson method for solving g(z)=0 is defined by 
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(3.6) 

. 

where !! is the j- th iteration for the solution. Thus, 
j+l 

z is found from 1 by 

utilizing the above relationship, exactly as in the finite-dimensional case 

(next section). Due to the presence of x(t)E CiN[tO,tf] in z, the Newton-Raphson 

method above has been formulated in a Banach space L. 

Substituting the g into the above equation, rearranging terms, and dif- 

ferentiating the terms associated with g with respect to time, there results 

(3.7) 
dji;(t) _ af($t) [j&) - i(t)1 + f&Id), t 4t0’tfl 

j+l 
got x (t,)) = 0, 

j+l 
!3f( x bf)) = 0 

This differential system is called the quasilinearization version of the Newton- 

Raphson method. McGill and Kenneth (1963) and Bellman and Kalaba (1965) provide 

more details. The algorithm proceeds as follows: 

1) Select an Ox(i) E C:N[tO,tf] such that go=gf=O; if x0 and xf are such 

that the boundary conditions are met, then an acceptable !(t) may be 

0 x(t) = x0 + ~(t-tO)/(t,-tOH(x,-Xg)’ td t(),t& 
2) Set j =O; 

3) For te [to,tf], compute f(i(t),t) and g (i(t),t); 

4) Compute Jil(t) by solving the Newton-Raphson differential system, in- 

tegrating in a stable direction (or else, combining the technique of 

Roby$s and Shipman (196!), described in the next section); 

5) If x (t) is "close to" i(t) by some standard, stop; 

6) Otherwise, set j =j+l and go to step (3). 

Quasilinearization techniques such as the one outlined above provide at 

each step an approximation to a solution of ;(= f(x(t),t) which satisfies the 

boundary conditions. This is a major difference between quasilinearization 

techniques and procedures outlined below. The latter, at each step, provide 

an approximation to the solution and the boundary conditions which satsify the 

differential equation. 
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3.3.3 _Cp_n_tinuation Methods for the Solution of the TPBVP .=.L .~-. ^ .-. _ - - - _ _ ~ 
In this section we are interested in describing some continuation or im- 

bedding methods for solving the two-point boundary value problem and discussing 

their advantages over more conventional methods. To this end, we have omitted 

many mathematical details necessary for a logically rigorous presentation of 

this material. We hopethisomission will make the presentation clearer for 

" the reader unfamiliar with continuation methods. Mathematically rigorous results 

may be found in Ortega and Rheinboldt (1970). 

For definiteness, consider the following two-point boundary value problem 

(TPBVP) which depends on a scalar parameter: 

TPBVP: Find x(t,E), a(E) and T(E) for times t and all parameters E such 

that x(t,E), a(e) are vectors in Rn and -r(c) is a scalar time, and such that 

these quantities satisfy 

(3.8) g (LE) = f((t,E)t,&) 

(3.9) x(0,&) = a(E) 

(3.10) @(a(4 Add ,d ,T(d ,E) = 0 

for all E and all t with O<t< T(E). 

Note that the function Cp, which maps R"x R"xR'x R1 into R"+', is given 

beforehand, and equation (3.10) summarizes the n+l initial and final conditions 

necessary to deduce n initial conditions (the vector a(E)) and the terminal time 

&d. One can choose $I so that (3.8)- (3.10) represent almost any initial or 

boundary value problem. In particular, (3.8)- (3.10) can model the TPBVP for 

which the terminal time 'c is not given explicitly (this is the situation for 

minimum time control problems). 

To solve the TPBVP we transcribe the equations (3.8)- (3.10) to a system 

of n+l nonlinear equations for the initial condition a(E) and the final time 

d4. To make this transcription define the function x(t;a,E) as the solution 

of the initial value problem 

(3.11) 8 (t; a,E) = f(x(t;a,e),t,E) 

(3.12) x(O;a,&) = a 
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for' all t,- a, E. Then we solve for a(E) and T(E) from the equation 

(3.13) $(a(4,x(dd; abAd ,+I ,E) = 0 . . . . 

Note that (3.13) represents n+l equations which we desire to solve for the 

initial state a(E) (n conditions) and the final time T(E) (one more cond+tion). 

The TPBVP of (3.8)- (3.10) has a solution if and only if (3.13) has a solution. 

Thus, the TPBVP is reduced to solving the nonlinear equation (3.13). 

Different techniques for solving the TPBVP derive from techniques for .' 

solving the equation (3.13). Thus, let us define the function G(a,-r,c) as 

(3.14) Gh-c,E) = da, x(T;a,E), T, E) 

and let us generically represent (a,&) by the n+l vector v. Then (3.13) takes 

the more general form 

(3.15) G(w) = 0 

which we solve for v as a function of c. 

Let us suppose that E varies.between 0 and 1. Often our problem is to 

solve a difficult problem 

(3.16) G(U) = 0 

when we know how to solve an easier problem 

(3.17) G(v,O) = 0 

Sometimes the parameter E occurs naturally in the problem (i.e., the viscosity 

in a hydrodynamic problem), but often we introduce the parameter E artificially. 

In either case, the rationale for replacing the single equation (3.16) with a 

family of equations (3.15) is that we may be able to continue the solution at 

E=O in (3.17) to the solution at ~=l in (3.16) more easily than computing the 

solution at E= 1 in (3.16) by itself. For example, a classic technique for con- 

tinuing the solution v(0) of (3.17) to a solution V(E) of (3.15) for c>O is to 

expand the vector function v(c) in a Taylor series in E. The validity of the 

expansion requires some regularity of the function G with respect to E, but in 

some cases where G does not depend regularly on E it is often still-possible to 
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use perturbation analysis to find a singular perturbation expansion of V(E) in 

terms of E. 

As a simple but concrete example, consider the following two quadratik 

equations: 

(3. @I y + y2. = E 

and 

(3.19) x + EX2 = 1 

The solution at E=O of equation (3.18) gives y(O)=0 or y(O)=-1. The solution 

Y(E) of (3.18) for E>O depends regularly on c and has the two possible power 

series expansions 

(3.20) y(E) = E - E2 + . . . 

or 

(3.21) J’(E) = -1 - E + E2 + 

This series corresponds to the 

(3.22) -1 + c=IE 
Y(E) = 2 

and 

(2.23) y(c) = -1 - ,+4E 

. . . 

Taylor expansion in powers of E of 

Equation (3.19) is not regular with respect to E as one can see by setting 

E= 0; there 'is only one solution x(O)= 1, whereas there must be two whenever 

Ego. Nevertheless, one can still expand the solution X(E) of (3.19) in the 

singular perturbation series 

(3.24) X(E) = 1 - E + . . . 

or 

(3,25) X(E) =-$ - 1+2+... 

which series correspond to the exact solutions 
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(3.26) 
-1 +J-iT-E 

XM = ZE 

and 

(3.27) 
-1 -m 

X(E) = ZE 

respectively. 

The approximations (3.20), (3.21) to (3.18) or (3.24), (3.25)to (3.19) are 

good when E is "small," but the trouble is that E= 1 is not small. In fact, 

the expansions (3.20), (3.21) and (3.24), (3.25) are valid only when 1~1 <%. 

For 1~1 >k, the series do not converge and one cannot use finitely many terms 

of the series to approximate the exact answer. For example, if one tries to use 

the series from (3.20) for E = 1 to approximate (3.22), one obtains the approxi- 

mations Y(E)= O,l,-1,2,-5,14,-42,132 and so on, which become progressively 

worse as one adds more terms to the series in (3.20). The exact answer is (3.22) 

with E=l, which gives Y(E)= .618033989.... 

In our examples in (3.18) or (3.19) perturbation analysis cannot continue 

the E=O solution beyond E=%. Nevertheless, there are continuation methods 

which can continue the E=O solution all the way to E= 1. One such method is 

the method of differentiation with respect to a parameter of Davidenko (1953). 

Consider the general equation (3.15), G(v,E)=O, and suppose that there is 

a solution V(E) of (3.15) which is continuously differentiable with respect to 

E. Taking the derivative of equation (3.15) with respect to E gives us the 

following differential equation for v: 

(3.28) Gdv,G =O 
vds E 

In (3.28) the expression Gv is the matrix of first partial derivatives of G with 

respect to v, and GE is the vector of first partial derivatives with respect to 

c. The initial conditions for the differential equation (3.28) is just the v(0) 

given by equation (3.17), namely 

(3.29) G(v(O),O) = 0 

Assuming that we can solve the linear equation 
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II 

(3.30) Gv(v,~)w + GE(vsc) = 0 

for w given < and E, then we can numerically integrate equation (3.28) from the 

initial condition (3.29). If the matrix G\)(v,E) becomes singular and (3.30) 

has no solution, then the numerical integration of (3.28) may fail. However, 

Keller (1977) presents methods for continuing the integration when Gv(v,~) 

becomes singular’. In this case one finds that (3.28) has bifurcating solutions. 

We discuss such bifurcations further in Appendix 3.1. 

As a simple example consider equation (3.28) again. In this case (3.28) 

becomes 

(3.31) (1 + 2.& = 1 _I 

with two possible initial conditions, either y(O)=0 or y(O)= -1. For all ~20, 

we can integrate (3.31) without difficulty and obtain the two solutions 

(3.32) Y(E) = 
-1 +m 

2 

from the initial condition y(O)=O, and 

(3.33) Yk> = 
-1 -m 

2 

from the initial condition y(O)= -1. 

Note that Davidenko's method succeeds in finding the solutions at E= 1 

whereas the power series method in (3.20), (3.21) fails. Using an integration 

step size of h= .l and Euler's method of integrating (3.31), we obtain the ap- 

proximation .6372 for y(1) corresponding to y(O)=O. Compare this to the exact 

solution y(l)= .6180.... 

The Newton-Raphson method is an alternative for solving the equation (3.16), 

G(v,&)=O, directly for any particular c, provided one has an initial estimate 

of V(E). Recall that the Newton-Raphson method calculates successive approxima- 

tions vk(&) from the recursive formula, 

(3.24) vk++) = v,(E) - Gvbk(E) dlG(uk(E),E) 
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To start the method one requires an initial estimate v,(c). In essence, if 

v~(E) is,"reasonably close" to V(E), then the estimates Vi(E) computed.from (3.34) 

conv,erge very quickly to V(E) as k tends to infinity. The disadvantage of using 

Newton-Raphson's method is that we may not have an initial v1 which is reason- 

ably close to the actual solution v. A continuation method such as Davidenko's 

method can help overcome this difficulty. 

As a specific example, consider the trivial equation 

(3.35) 1 - emtVmE) = 0 

and suppose that we know that v(lO)=lO but we wish to approximate v(0) from 

this initial guess. The guess vl(0)= 10 is disastrous for applying Newton- 

Raphson's method. The recursion equation (3.34) for E= 0 becomes 

(3.36) vk+l = vk + 1 - e 'k 

and we find that if VI = 10, then ~~"-22015, ~~~-22014, ~~~-22013 and so on. 

One requires over 22,000 iterations of (3.36) to approach the true root v=O. 

Davidenko's method leads to the numerical integration of the 'differential 

equation 

(3.37) 2 = 1 ‘, 

with the initial condition v(lO)=lO. If we use Euler's method of integration . 
with step size h, we will require roughly 10x h-l integration steps to reach 

the approximation of v(0). Note that the approximation will be accurate to 

order h. Thus, Davidenko's method leads to the approximate solution of (3.35) 

at c=O in a reasonably few integration steps if we do not require great accuracy 

in our approximation. i’J 

For future reference we now present another continuation method different 

from Davidenko's method. Ortega and Rheinboldt (1970) present this method as 

an example of continuation methods. 

This continuation method differs from Davidenko's method in that it does 

not use a differential equation to Calculate V(E) at successive values of E. 

Instead it uses the Newton-Raphson method (3.34) in a recursive fashion as we 
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Let us solve G(v,E)=O at E=E~,E~,...,E~ where O<E~E~<E~...E,,. ” 

Suppose that we :have an initial estimate v" for v(0) or perhaps we know v"~~v(0);! 

Also,assume given the sequence m1,m2,...,mn of positive integers. From thi.s 

initial estimate one 

define v~+~(E~) as 

defines Vk(~i) recursively as follows. For 15 k<mi'- 1, 
: '.,C 

(3.38) vk+l(&i) = 

now explain... 

for k=l and i21, define V1(Ei) as v 
mi-l 

(Ei_l). This technique operates by ., 

recursively calculating Newton-Raphson approximations of the equation G(v,E~)=O' 

by using as an initial estimate for v(E~) the approximation of v(E~-~) found,.... 

from solving G(v,eiDl >=O. By suitably choosing the pi and the mi, one can 

continue a solution of G(v,O)=O to a solution of G(v,E)= 0 for relatively large 

values of E. Accuracy depends on how close together one takes the ~~ and how 

large one takes the m.. 

The Newton-Raphsln technique is a fast converging approximation method " 

provided that the initial estimate is close to the exact solution. In this case, 

the error at each step is reduced by squaring. II 

k+l iteration is approximately 6k2, 

That is,, the error 6k+l at the. 

and thus, convergence is very fast. A 

continuation method such as Davidenko's method is inferior to Newton-Raphson's : 

method from the standpoint of accuracy with respect to computation speed. The 

Davidenko method ,makes a final error proportional to the integration step size 

h in the integra>$ion of (3.28) (or proportional to h" for a> 1 if a better in- . . 

tegration scheme,khan Euler's method is employed). . If one tries to obtain good 

accuracy by choos;ing h small, the integration time may be quite long. For ex- 

ample, numericall,y integrating (3.37) to obtain the solution v(0) of (3.35).to 'X 

four decimal places accuracy would require about lo5 integration steps using I 

Euler's method ,o$.integration. 

However,, although the continuation methods are inefficient in computing -" 

highly accurate solutions, these methods are much less sensitive than Newton- 

Raphson to the initial estimate of the solution. 

Similarly, continuation methods are not as efficient as perturbation ex-. .:. 

pansions when the? perturbation parameter is small. On the other hand, continuatioh 
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I I I .._ - .-- .-. 

methods such as Davidenko's method provide solutions even when the perturbation 

parameter is large. 

Ideally, one might use a continuation method together with a method such 

as Newton-Raphson or perturbation analysis. For example, one might first use 

Davidenko's method with a modest integration step size to compute an approxima- 

tion reasonably close to the exact solution. Then, using Newton-Raphson's 

method and using the Davidenko approximation as an initial estimate, one could 

obtain a very accurate approximation of the exact solution. Such an algorithm. 

is described in Appendix 3.2. 

Having presented these different continuation techniques for computing the 

solution of G(v,E)=O, we now show how to apply these techniques to the TPBVP. 

There are basically two continuation methods for solving the TPBVP which corres- 

pond to the two continuation methods for solving the equation G(v,s)=O. Kubicek 

and Hlavacek (1973) use Davidenko's method to solve the TPBVP, and Roberts and 

Shipman (1967) use the continuation version of Newton-Raphson to solve TPBVP. 

Kubkcek and Hlavacek Algorithm 

They also call this method general parameter mapping or GPM. The function 

G is given by equation (3.14) and then the TPBVP is solved by solving (3.15). 

Kubicek and Hlavacek do this by using Davidenko's method--that is, by solving 

the differential equation (3.28). To use Davidenko's method, we must compute 

Gv and GE as follows: 

(3.39) Gv(a,d =(i[ : z: ; ir) 

and 

(3.40) GE(a,w) = @x 0 xc + $E 

The subscripts in equations (3.39) and (3.40) denote partial derivatives. Thus, 

+a=z is the (n+l)x n matrix of first partial derivatives of $(a,x,$,c) with 

respect to a (remember that $ takes its values in R '+' and a is a vector of R"). 

Similarly, 'jx is the (n+l)x n matrix of derivatives of C$ with respect to x; xa 

is the nx n matrix of derivatives of x(T;a,c) with respect to a. The expres- 

sions X~ and xE denote the n-vectors g and g. Likewise, @T and @c denote the 

(n+l) -vectors .a! y$ a-r and 
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From the original formulation of the problem, one can find 9, @,, Q,, @= 

and $E. However, to compute G, and GE, one needs x, x,, X~ and xE, and one 
must integrate (3.11), (3.12) directly. That is, one integrates (3.11), (3.12) 

to t=T to obtain x(T;a,E). Then x,(T;a,E) is given from (3.11) as 

(3.41) XT = f(x(T;a,E),T,E) 

To obtain x, and xc we differentiate (3.11), (3.12) with respect to a and E re- 

spectively. Thus, x, is the solution of the initial value problem 

axa (3.42) at = f,(x(t;a,e),t,~)=x, 

(3.43) x,(O;a,e) = I 

where I is the nx n identity matrix. Likewise, xE is the solution of the initial 

value problem 

ax 
(3.44) 2 = fx(x(t;a,E),t,E)*xE + fE(x(t;a,&t,E) 

(3.45) xE(O;a,E) = 0 

Thus, an algorithm for solving the TPBVP 

might be the following: 

(3.8 >, (33, (3.10) for Or&<1 

1. Solve the problem for E=O. Set s<O and a(E)=ao, -r(e)=~~. Choose 

integration step size h (for integration with respect to E). 

2. For E, a(c), -r(~) given, compute x, x,, X~ and xE from integrating 

(3.11), (3.12), (3.41), (3.42)- (3.45). 

3. With these values of E, a(E), T(E) and x, x,, x T' xE from #2, use 

(3.39) and (3.40) to compute G= and GE. 

4. Using some numerical integration scheme on (3.28), compute 
~=(iL&L) and use this to evaluate (a(&+h), T(E+h)). 

5. Update E to E+h. If ~21, stop. If ~<l, return to step 2. 

Roberts and Shipman - 
Roberts and Shipman (1967, 1968) solve a TPBVP 
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dx (3.46) dt = f(x,t), O<t<tI 

(3.47)' x(0) = a 

(3.48) x(a,x(tl)) = 0 

where tI is given by allowing the terminal time to vary from 0 to tI and keeping 

all other conditions the same. In terms of the general formulation (3.8), (3.9), 

(3.10), Roberts and Shipman solve the problem 

(3.49) E = f(X(t;&),t) 

(3.50) x(0,&) = a 

(3.51) xb,x(dE),d) = 0, T(E) = E 

for all E and all t such that O<t<T(s)= E. Thus, Roberts and Shipman allow 

just the final time T to be the parameter E, and they solve the original problem 

(3.46)- (3.48) by varying E from 0 to tl in (3.49) - (3.51). The continuation 

method they use is the extension of Newton-Raphson's method we described for 

solving G(v,E)=O. Since this continuation method is easily applied to the more 

general problem (3.8)- (3.10), we do this rather than treat the specific problem 

Roberts and Shipman (1967, 1968) use in their papers. Nevertheless, for future 

reference we will refer to this continuation solution of the general TPBVP as 

the Roberts-Shipman method. 

The method consists of applying the equation (3.38) to solve G(v,E)=O when 

G is defined by (3.14). One obtains Gv from (3.39) just as in using Kubicek 

and Hlavacek's GPM method. This requires numerical integration of the equations 

(3.11), (3.12) and (3.41)- (3.43) just as before. One possible algorithm to 

solve the TPBVP using the Roberts-Shipman method is then the following: 

1. Solve the problem for E=O to find ao, ~~~ Choose E~=O, 

O<El<E2 . . . En, and choose positive integers mi; 1s i-< n. Set 

i=O, k=O, ak(&i)=aO, ~k(Ei)=~O. 

2. FOG Ei, ak(Ei), -ok given, compute x, xa, X~ from (3.11), (3.12), 

(3.41)- (3.43). 

3. With these values of Ed, ak(&i), 'k(Ei) and x, xa, X~ from #2, use 

(3.39) to compute Gv. 
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4. Invert Gv from #3 and evaluate (ak+l(ci), T~+~(E~)):V~+~(E~) from 

equation (3.38) (the Newton-Raphson step). 

5. Update k to k+l. If k=mi, go on to step 6; otherwise return to 

step 2. 

6. If i= n, stop. Otherwise Set aO(Ei+l)=ak(Ei) and ~O(Ei+l)=~k(Ei) 

and reset k to 0; set i to i+l and return to step 2. 

Su.cary of HistorEnd Advantages of Continuation Methods 

Continuation or imbedding methods have long been used to prove existence 

theorems for operator equations. Ortega and Rheinboldt (1970) give a nice 

discussion of the method with many historical notes and references. Ficken (1951) 

contains references and notes on the literature previous to 1950, including some 

from the last century. 

Lahaye (1934) and later, independently, Davidenko (1953) first applied con- 

tinuation methods to the numerical solution of nonlinear equations of the form 

G(v,E) = 0. Davidenko introduced the method of differentiating G(v,E) with re- 

spect to the parameter E to obtain a differential equation for v. 

More recently, the method of continuation has been used to solve numerically 

fixed point problems. See Kellogg, Li and Yorke (1976) for example. Rigorous 

and powerful mathematical treatments of the continuation method rely on topolo- 

gical homotopy theory. 

A preliminary study of simple nonlinear problems indicates the method of 

differentiation with respect to a parameter, Davidenko's method, when used in 

conjunction with perturbation analysis or a Newton-Raphson method, offers a 

powerful numerical technique for solving nonlinear problems. The main advan- 

tage of the continuation method is that it permits one to approach an exact 

solution* even when the initial estimate is not close to an exact solution. If 

one uses a method such as Newton-Raphson together with the continuation method, 

then one can also achieve good computational efficiency. The essence of the 

technique is to use the continuation method to obtain a rough first estimate 

and then use Newton-Raphson to refine the estimate. See Rheinboldt (1978). 

Many other variations are possible. For example, Keller (1976, "Bifurca- 

tion Theory and Nonlinear Eigenvalue Problems," unpublished lecture notes, Cal- 

tech) poses a continuation problem in terms of an equation G(v,c)=O where v is 

*This includes all local minima which satisfy the first order necessary con- 
ditions of optimality. 
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an element of a Banach space and G(=,E) is an operator on that Banach space. 

Such an approach allows one to treat the TPBVP as a nonlinear operator equa- 

tion on the Banach space of solution functions x(*,E) of (3.8)- (3.10). Al- 

though seemingly more complicated than the approach of Kubicek-Hlavacek or 

Roberts-Shipman, this infinite dimensional point of view may offer the advan- 

tage of a numerically more stable solution algorithm. 

The continuation methods seem very promising for application to the non- 

linear TPBVP which appear in optimal control problems, and the technique 

deserves wider circulation. 

Example 

To see how continuation methods might be applied to aircraft trajectory 

optimization, consider the planar minimum-time-to-climb problem of Ardema (1976). 

Because of the absence of terminal constraints on horizontal position, the 

variables x and y are unnecessary. Also, the problem is solved in the vertical 

plane, so that the heading, B, and roll control variables are omitted. Thus, 

h, y and V remain as state variables and velocity V is replaced by energy e. 

Also, thrust T is assumed constant, so that L (or a) is the only control variable. 

This reduced system is of a dimension six which would allow a relatively 

inexpensive means of verifying and developing the various computational al- 

gorithms. The TPBVP for this system looks like 

i = f(x(th4 
where 

x = (h,y,e~~h~~y9~E) 

and 

h = V siny 

v; = L* - cosy 

;! = V(T-D) 

ih = Ah(g/V)siny - Ay(1/V2)(g/V)(L*- c-y) - XE g 

AY = -AhV cos - Xysiny/V 

iE = -xh(l/v) + Xy(l/V2)(1/V)(L*- cosy) - XE g 

where 
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P = V(T-D) 

D = D(LX2,h,e) 

and 

EX 
L*=l, 

AEV2B 
the optimal control. 

In the expression L*, B=B(M) is an induced drag parameter, suitably dimension- 

alized for the available tabular data, and E is the parameter used as the l 

independent variable for solving the vector of unknown initial conditions, n, 

in the GPM method of Kubicek and Hlavacek (1972). In this example, 

n= (X h0 y0 (t ),A (t ),Ae(tO)), the initial values of the three adjoint variables. 

The E=O solution would be a starting point. (Note that this means L*=O.) 

Other parameters are possible; for example, Breakwell (1977) uses 

E ' =1/(2(L/D),,, ) for the same problem. This is a coefficient of the induced 

drag term, so that the Hamiltonian would be linear in L for E' = 0, producing 

a singular arc. Both formulations will be considered. 

The boundary conditions are 

h(tO) = ho, Y($-$ = Yak) 

e(to) = eo, h(tf) = tf 

e(t,) = ef, Xy(tf) = 0 

The vector n defines the unspecified initial conditions. 

This problem, then, is in a form to be solved by GPM, starting from E o=O 

(or E;)). The algorithm involves integrating the parametric system 

!i!L 
de -hl.E)~ 

where 

Fi(X(tf,~,&)) = 0 

is the ith terminal boundary condition resulting from an integration of' the 
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dynamic system to tf from a given n, and 

rn(n,~) =.the Jacobian. CaFi/anj) 

In this formulation the integration occurs for all E in [cz~,E~], where cf 

is the desired value for E. Note that, at each step in the integration, it is 

necessary to integrate the dynamic system to tf, in general. (This may be re- 

laxed to every kth step of E if convergence is good.) The differential equations 

arise from applying the implicit function theorem to the system Fi=O. 

Ultimately, . it is desired to designate E as the singular perturbation para- 

meter. The application of schemes similar to GPM to this problem is not as 

straightforward, because in this role, E=O reduces the order of the system. 

However, it is possible to transform the problem so that the scaled time para- 

meter, -rit/,, is the new independent variable in the dynamic system. The 

solution could then proceed from E= 0 as follows: with E= 0, compute the O?- 

order solution, including boundary layer solutions at both to and tf. Boundary 

layer matchings of solutions are necessary to assign values to system parameters 

to insure a stable integration. This Ot-h-order solution for x(t) could then 

be the first iteration in a continuation process, which would advance E from 0 

to a value small enough so that a first order linearized expansion is adequate. 

We discuss continuation of singular perturbation problems further in 

Appendix 3.1. In addition, Appendix 3.1 discusses the problem of bifurcation 

in continuation. Appendix 3.2 describes a general continuation algorithm which 

we have implemented and which is based on the work of Kubicek (1976) and Keller 

(1977). Appendix 3.3 presents some simple numerical examples of TPBVP's solved 

by continuation. Finally, Appendix 3.4 contains a large bibliography of con- 

tinuation method references. 
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APPENDIX 3.1 

BIFURCATION AND SINGULAR PERTURBATION PHENOMENA IN CONTINUATION 

The basic continuation problem is to solve the equation 

(1.1) G(W) = 0 

for the vector x in terms of the real parameter A. If B is a Banach space and 

G maps BxR into B, then we wish to find the trajectories X+x(X) in B which 

satisfy 

(1.2) G(x(X),X) = 0 

for all parameter values X. For example, (1.1) might be the nonlinear equation 

for the missing initial values in the TPBVP. In this case, B would be a finite 

dimensional space, B= R". On the other hand, one might treat the entire trajec- 

tory control and state trajectory as a vector in an infinite dimensional vector 

space B. In that case, (1.1) would be a nonlinear operator equation on the 

Banach space B given by the Euler-Lagrange necessary conditions for the trajec- 

tory optimization problem. It appears that this infinite dimensional point of 

view offers the advantage of numerically more stable solution algorithms. 

The: method of differentiation with respect to a parameter first discussed 

by Davidenko (1953) solves the equation (1.1) for all values of the parameter A 

by differentiating equation (1.2) with respect to X to obtain 

(1.3) g Mx>,x> +f + g (x(x),x) = 0 

Equation (1.1) is first solved at some value of the parameter A, say X=X0, and 

the solution x(X0) is used as an initial condition from which to integrate the 

equation (1.3). The integration may proceed as long as the Frechet derivative 

g OGdJ) , which is a linear operator from B into B for a given value of x 

and X, is nonsingular and may be inverted to solve for the derivative d1 dx from 

(1.3). If g (x(X),X) should become singular for some value of X=iI, then a 

bifurcation has occurred at XI, indicating a sudden change in the nature and 

number of solutions of (1.1) in the neighborhood of XI. 
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In Figures 1 and 2 typical bifurcations* are illustrated. In Figure 1 

there is one solution of (1.1) for values of A near X1 such that X<X1, and 

there are two solutions of (1.1) for values of X near hl such that h>X1. In 

Figure 2 there is no solution of (1.1) for values of X near A1 and such that 

;z > Al, but there are two solutions for values of X near X1 such that X<Xl. 

The proper treatment of bifurcations is extremely important in applying the 

continuation method to the solution of nonlinear problems for which there may 

be mul.:;-iple solutions. Such a situation occurs, for example, if the Euler- 

Lagrange necessary conditions allow multiple extremal solutions of the trajectory 

optimization problem. One attractive feature of the continuation method is that 

it will yield all of the multiple solutions--provided that one has an algorithm 

that can handle bifurcations. We have implemented an algorithm due to Keller 

(1977) which handles both bifurcations pictured in Figures 1 and 2. For ex- 

ample, in Figure 1 the algorithm would trace out the left branch until X ap- 

proached 'x,; then it would indicate the singularity of g (x(X1),x1) and proceed 

to trace the two right branches. In Figure 2 the algorithm would trace out the 

upper :eft branch until the parameter value reached X1. It would then indicate 

a sing!!larity in g (x(X1),X1) and reverse direction of the parameter X to trace 

the lower left branch. This continuation algorithm is described in more detail 

in Appendix 3.2. 

111 solving a nonlinear equation G(x)=0 by the continuation method, one 

first mbeds this problem in a one-parameter family of problems represented by 

(1.1) :'or which the parameter value h=l gives the original problem and the 

parameiler value A=0 gives a problem with a known solution. If one continues 

all of the solutions of (1.1) at X= 0 to values of X for which X> 0, then one 

is gua,'anteed to find all the solutions of (1.1) at values of X> 0, provided 

that one follows all the branches from bifurcations. In this way, one finds ~___--~-.---. 
all the solutions of the original nonlinear problem G(x)=O. In the case of 

an opt'mization problem, such as the trajectory optimization problem, one ob- 

tains all the extremal trajectories which satisfy the necessary conditions, and 

one may pick out the optimal solution from these extrema. 

In addition to following all branches from bifurcations, it is also impor- 

tant t1.j know all the initial solutions at X= 0 and to continue each of these 
--.- .._.. -_ 

*See note for Figure 2. 
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Figure l.-Example of Bifurcation Point. 

Figure 2.-Example of Limit Point. 

NOTE: Unhappily, as in the case of the word "singular," "bifurcation" has come 
to have at least two distinct meanings. As opposed to the above definition, sev- 
eral authors, e.g. Keller (1977), designate only the X in Fig. 1 as a bifurca- 
tion point, making it a subset of our definition. 
is named a limit point. 

In $his case, X1 in Fig. 2 
The cases of Fig. 1 and Fig. 2 are distinguishable 

mathematically, as will be shown in Appendix 3.2. 
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solutions to values of X>O. One usually selects the one-parameter imbedding 

(1.1) so that it yields only one solution x(X) for X in a neighborhood of 0. 

However, it sometimes happens that (1.1) has no solution at X=0 although it 

has a unique asymptotic behavior as X+0. Such is the situation in problems 

such as our aircraft trajectory optimization problem, in which the parameter X 

represents a singular perturbation near 0. For example, the parameter X is 

denoted by E in the aircraft optimization problem represented by (4.2.46), 

(4.2.47') in Section 4.2. These equations have no solution at X=0 since it is 

generally impossible to satisfy all the boundary conditions for the reduced or- 

der (A = 0) equations. However, the optimal solution has a well-defined, unique 

asymptotic behavior as X+0. In this case, it is still possible to apply the 

continuation method successfully by starting the process at a ho>0 in a neigh- 

borhood of X=0 and by using the asymptotic approximation of the solution x(X0) 

as the initial condition in the differential equation (1,3). To do this, one 

may have to make preliminary Newton corrections to obtain a more exact initial 

condition at X0, but for small nonzero values of the parameter X the asymptotic 

approximation is very accurate and only a few Newton corrections are usually 

necessary. The implemented continuation algorithms feature such preliminary 

Newton correction, as well as Newton correction after every prediction step, to 

improve accuracy to a pre-specified tolerance. 

Continuation from a singular perturbation will be effective when the asymp- 

totic approximation is good for A near X=0 but not very good for X near the 

desired solution at X=1. In particular, this technique will improve the 

asymptotic approximation to the aircraft optimization problem when the total 

range for interception decreases below the lower limit for validity of the 

energy state approximation.* 

*This lower limit is about 160-170 Km for the F-4 example problem. 
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APPENDIX 3.2 

GENERAL CONTINUATION ALGORITHMS 

A series of numerical algorithms for the solution of nonlinear systems of 

the form (A3.1.1) has been developed for application to such problems as air- 

craft trajectory optimization. Ultimately, it is hoped to combine these al- 

gorithms into one system. In this way, the simplest (and presumably the most 

time/core-efficient) algorithm may be selected initially, switching to more 

complete algorithms as the numerical development of the problem warrants. The 

basis for the developed algorithms lies principally in work by Klopfenstein 

(1961), Kubicek (1973, 1976), Keller (1977) and Rheinboldt (1977). 

Each of the aforementioned researchers realized that effective implementa- 

tion of the parametric system of Davidenko (A3.1.3) requires adequate treatment 

of the Frechet derivative 

(2.1) F(x(x) ,A) = 2 MhLX) 

when X is in the neighborhood of some point XI at which F becomes singular. F 

is singular at either point hl in Figure 1 of Appendix 3.1 (a "proper" bifur- 

cation point) or Figure 2 (a "limit" point). Rheinboldt and Keller have de- 

veloped a means of extending the continuation through the Figure l-type bi- 

furcation point. This point differs from the limit point of Figure 2 in a 

mathematical sense, as will be seen below. Limit points are somewhat easier 

to deal with, and so will be discussed first. 

As can be seen in Figure 2 (especially if one imagines x and G to be scalar), 

dx/dh-+w as x+x1 from x0. Hence, F must be singular at XI for the trajectory 

to be meaningful. It is also precisely at x1 where the parameter x loses its 

monotonic property. Because the connection is not coincidental, it seemed 

reasonable to augment the problem by introducing an arclength parameter, Say t, 

which is by nature monotonic. The problem is augmented in that the system 

parameter X is now itself a dependent variable in the arclength parameter. Thus, 

if XE R", the augmented system is based on the solution of 

(2.2) G(x(t),X(t)) = 0 
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or 

(2.3) G(y(t)) = 0 

where 

(2.4) y = (x,X), YE R"+l 

Since there are now n+l unknowns, (2.2) must be augmented by the particular 

arclength relationship. Both Klopfenstein and Kubicek use a purely Euclidean 

relationship (called a "normalization") 

(2.5) N&x,X,t) = 0 = x12 + . . . + in2 + i2 - 1 

where 

(2.6) (*) 4% 

The system can now be solved, as follows: 

Equation (2.7) is the starting point for both methods of Klopfenstein and Kubi- 

cek. It may be rewritten 

(2.8) A; = 0 

where 

(2.9) A =[$$]=[F,$] 

Equation (2.8) is a system of n equations for the n+l unknown elements of y. 

Klopfenstein does not distinguish between the Xi and X, considers X= xn+l. 

His method depends on finding an xn+l for which F remains non-singular. Then, 

(2.10) i = -F-l($)in+l 

Equation (2.5) then determines $,+1. 

The method of Kubicek is more "robust" in that, while he also considers X 
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and x functionally equivalent in terms of t, the most non-singular nx n sub- 

matrix of A is used at each point for the matrix inversion operation. This 

is achieved by Gaussian elimination with controlled pivoting. By this procedure, 

one of the n+l columns of A for which A is "most singular" is eliminated, say 

column k. Then xk-yk plays the role of the parameter X, instead of always 
. 

usi w Y,+~. Equation (2.7) is,then rearranged and solved for the n ii, it k: 

(2.11) $ = Fk[jli] +a& ; 

i*k 
ay k Yk = o 

where 

(2.12) Fk = 

aG1 aG1 aG1 5 
ayl ’ l ** 9 ayk-1’ ayk+l’ -** 9 ay,+l 

. 

aGi 

ay1 
. . . 

1 
aGn aGn 

ayl ’ l ** ’ aykel’ ayk+l’ --’ ’ a$.,+l 

a 

(2.13) ii = -Fk-'($y , i;tk 
k k 

Note that Fk is nx n, a square matrix. Equation (2.13) is similar in form 

to (2.10), but more general. 

As before, the ii are substituted into (2.5) to solve for the final element, 

ik' The sign ambiguity is handled by selecting a sign at the starting point, 

yo, t=O, which is consistent with the problem, realizing that t increases 

monotonically. For example, if rudder deflection, 6r, is selected as y and 
.k 

has the value +6rmax at the starting point, then the negative sign on yk would 

be selected, so that continuation may proceed into the acceptable range of 6r 

values. 

The Gaussian elimination procedure works as follows: all of the elements 

of A are scanned for the one with the largest magnitude. This element becomes 

the pivot point for the elementary matrix row operations which are used to zero 
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all remaining elements in the column of the pivot element. This column is ., 

saved and the scanning process begins, again, for the remaining columns. This 

process is only done n times, leaving untouched the column whose elements are 

consistently the smallest. The untouched column becomes column k. The remain- 

ing n columns can be rearranged to produce a diagonal matrix, whereupon inversion 

is straightforward. 

Again, the method works well at limit points because, say at XI in Figure 

2 of Appendix 3.1, X would cease to be the parameter, but would be replaced by 

one of the Xi. It should also be mentioned that provision can be made for in- 

fluencing the choice of yk by scaling each of the columns of A by a scalar, thus 

reducing their magnitudes. 

Given that the n+l pi have somehow been found at a certain point tc [O,l], 

the continuation process of Kubicek evolves essentially by integrating the sys- 

tem (2.13) and (2.5) for y(t). The continuation proceeds numerically by a 

predictor-corrector sequence. At the starting point (t= 0, X=X0), the xi are 

found to the required precision using Newton-Raphson. Then, Adams-Bashforth 

variable order (54) is used to advance all of the yi--i.e., xi and X--to a pre- 

dicted value. At this new point, yk is found as described above, and Newton 

corrections are made on the yi, it k, until reasonable convergence is assured. 

Typically, no more that three or four Newton-corrector steps are needed at 

each point. The Newton-corrector formula is 

(2.14) y(j+') = y(j) _ Fk-lG(y(j),yk) 

where y(*) is an nxl vector of all yi, i# k. 

The Klopfenstein/Kubicek algorithm was also tested on another project. In 

this application, equilibrium solutions of an aircraft are generated in both 

developed spin and roll departure flight regimes. The continuation system is 

the equations of motion, with the derivatives set to zero. One of the three 

aerosurface controls is chosen as the nominal continuation parameter, and the 

other two are set to fixed values. For spin analysis, an eighth order system 

of equations is needed, because of coupling effects arising from the need to 

employ the full nonlinear expressions. (The roll departure regime requires 

only a fifth order system, but is still highly nonlinear.) However, the con- 

tinuation algorithm described above is able to solve for the equilibrium surfaces 
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quite readily. This algorithm is also the basis for some of the two-point 

boundary value problem (TPBVP) continuation examples which are described in 

Appendix 3.3. For TPBVP applications, the system (2.5), (2.13) operates in 

function space rather than Euclidean n-space. The significant difference is 

that, for every continuation step ("outer" integration), a full solution must 

be generated between the two boundary points by quadrature ("inner" integration). 

While the function-space process is thus considerably more complicated, the 

continuation itself is non-iterative; that is, the continuation parameter moves 

directly from its initial to its final value. There is no retracing or repe- 

tition of this outer loop quadrature. 

For flighttrajectory optimization problems, the TPBVP system consists of 

adjoint, or influence, functions whose initial conditions are unknown in general. 

These, then, become the variables x in (2.2) and A, the continuation parameter, 

is usually chosen to be a physical parameter such as (L/D),,, or air density, 

This choice enables a reasonably simple solution to be found at x=0. See 

Appendix 3.3 for a discussion of continuation methods applied to the solution 

of TPBVP's. 

At this point, it is probably easy to appreciate that it is quite often 

convenient to evaluate the elements of A numerically, rather than to pre-compute 

analytic expressions. This is particularly the case when simulating flight 

vehicle trajectories, because such expressions involve terms containing tabular 

data. Analytic expressions for such terms are typically very complicated. 

Therefore, a numerical differentiation algorithm has been developed and is now 

a part of our basic continuation algorithm. It may be invoked at the user's 

option. 

The algorithm which thus far has worked most efficiently is the following: 

to compute Fdac at ax x=x 0, fit a cubic spline to G(x) at the following five 

points (knots): 

(2.15) G(x+ iA), i= O,il,+Z 

Once this fit is made, the slope of the spline function at x0 becomes the,ap- 

proximation to F(xG)A FG. In general, G may be a vector and x a scalar. If 

XE R", the extension is obvious; one merely performs the operation n times for 

each xj. 
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It is important to use a value for A which is small enough to adequately 

represent FO, yet not so small that numerical difficulties result. Thus, we 

require* 

(2.16) (G(x) - G(x+A)l 2 O(E) 

where c=O.OOOl has been shown to produce good results. 

The algorithm for selecting A is as follows: 

1) initialize i= 1 

2) set Ai=c (this is exact if F(xo)= 1) 

3) compute Gi = IG(xO)-G(xOfAi)l 

4) if &<G,,clOc, go to 7 
5) if not, set Ai+l=Ai & 

( > 1 

Note that Gi=O where the slope is infinite 

6) set i=i+l and go to 3 

7) set A=Ai and do the spline fit 

If a solution for A is not obtained after five iterations, a warning is printed 

and A is set to A 5’ 
As mentioned above, the Kubicek algorithm is unable to solve automatically 

for all of the branches which emanate from the bifurcation point X1 shown in 

Figure 1 of Appendix 3.1. We have implemented, therefore, a method based on the 

work of Rheinboldt (1977) and Keller (1977) which can not only continue the 

original branch accurately past Al, but also accurately evaluate hl and the 

slope of the "secondary" branch at al. With this slope, continuation along the 

secondary branch can proceed as usual. 
Keller's algorithm begins with the system (2.2) augmented by the "pseuJo- 

arclength" normalization 

(2.18) N3 h G~oT(x-~O) + (I-e)i(A-Ao) - (t-t,) = 0 

where t is the arclength parameter, 0 is a constant selected such that 0<0<1, 

and (x~,,I~)=~~ are the values of the unknowns and the parameter at to. The 

*If GCRn, (2.16) is modified: 

(2.17) $ iiljGi(~) - $(x+A)l = o(E) 
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augmented system is now: 

(2.19) 

where 

(2.20) y = [;] , YE Rntl 

Keller has shown that, using N3 as given by (2.18), the quantity 

(2.21) B&z! 
3Y 

is nonsingular if and only if 
aG. . a) F=x 1s nonsingular; or 

b) g r!R(F), where R(a) denotes range space. 

Case (b) corresponds to a limit point. At such a point (e.g., Figure 2 of Ap- 

pendix 3.1) there is no intersection of branches, but dx/dh+m. However, solu- 

tion of the augmented system (2.19) continues normally. 

If neither condition (a) or (b) holds at some point XI, then B is sirlgular 

and XI is the type of bifurcation point shown in Figure 1, where two or more 

branches intersect. As mentioned above, XI is skipped over, in order to continue 

along the initial branch. Any predictor-corrector method will suffice fot this. 

Continuing the solution along the second branch then proceeds as follows*: 

1) compute aG/ax (singular) at the bifurcation point, and get an apl:roxi- 

mation for dx/dt and dX/dt. 

2) compute the eigenvalues and eigenvectors of aG/ax. Call the eigenvector 

corresponding to the zero eigenvalue $,, and the others @I,...,$,-I. 

3) compute 9,~ in the following: 

(2.22) (aG/ax)oN + aG/ax = 0 
where $, is a linear combination of the vectors $I,...,aN-I. The 

vectors QI~ and 4N define the plane in which a solution for ax/at can 

appear. 

4) solve for the coefficients to and 'IN in: 

*This is Keller's (1977) "Method II." 
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(2.23) Y. = T&l+ 11~,112) 

T z-r 
N 0 ll$J12 

6) now we seek a solution of the form 

(2.25) x1=x tE[Q* t?$l]'v 0 00 NN 

x1 : x0 + ETN f n 

where xo,Ao is the solution at the bifurcation point. 

7) finally, starting with V- 0, n=O, use Newton's method to find a solu- 

tion to the equations: 

(i.26a) 6(xl,Al) = 0 

(2.26b) (90$; f 'N$;)V + YNn = 0 

The c terms in (2.25) move the possible solution away from the first branch, and 

equation (2.26b) insures that the free variables \I and n do not bring the solu- 

tion back. Thus, any solution found must be on the second branch of the solution 

czrve, and can be used as a starting point for a normal continuation solution. 

This method has been implemented and run on test problems. Because of its 

complexity, especially in the use of TPBVP continuation algorithms, much effort 

11. required to select numerical parameters and quadrature techniques which will 

vfficiently deal with the system at hand. 



APPENDIX 3.3 

APPLICATION OF CONTINUATION ALGORITHM TO TPBVP: NUMERICAL EXAMPLES 

The algorithm described in Appendix 3.2 was applied to solving three ex- 

ample TPBVP's by the shooting method. The theory behind the shooting method is 

presented in Subsection 3.3.3 and we refer the reader there for details of the 

basic method. Note that the present method of solving the TPBVP by shooting 

uses both the Davidenko method of differentiation with respect to a parameter 

described by Kubicek and Hlavacek (1972a, 1972b, 1973) and Kubicek (1976) and 

the Newton-Raphson method described by Roberts and Shipman (1967, 1968) to- 

gether in one algorithm. 

Example #1 

This is a nonlinear second order two-point boundary value problem which we 

solved by continuation with respect to the final time as described in Roberts 

and Shipman (1967, 1968, 1972). The problem was to solve 

d”l -=u lnu dt 1 2 

d”2 _ 
(3.1) dt - u2 In uI 

U1(0) = 1, u2(T) = e 

for several given values of the final time T. The problem was solved numerically 

by continuation with respect to the final time T, starting at T=O where the 

problem reduces to an initial value problem with uI(O)= 1 and u2(0)=e. The 

problem in (3.1) was chosen to be the nonlinear transformation of the linear 

problem 

dxl _ -_ 
dt '2 

(3.2) 
dx2 _ 
dt - x1 

x1(O) =O, x&T)=l, 
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via the transformation ul=e Xl and u x2 2 = e so that we would have an exact solu- 

tion to the problem (3.1). If b(T) denotes the missing initial condition 

u2(0)=b(T) in (3.1) for the problem with final time T given, then the function 

b is given by the formula 

(3.3) b(T) = exp(2/(eT+eeT)) 

The numerical continuation solution agreed with (3.3) exactly in all displayed 

decimal digits. 

Example #2 

This is also a nonlinear, second order TPBVP but the final time is fixed 

and an internal parameter is used for continuation. This example represents the 

equilibrium equation for the heat distribution in a rod of length x=1. The 

problem is solved by continuation in Wasserstrom (1973) which is an excellent 

review ,of continuation methods in general. The equations for the problem are 

dYl 
aiT = Y2 

dY2 _ 
(3.4) ;lj;- - A exdyl) 

Yl(O) = Y2(1) = 0 

where X is the continuation parameter used. We applied continuation to the 

shooting method to calculate numerically the missing initial condition 

y2(0)=b(X) for values of the parameter X between 0 and 1. Note that for X=0 

the problem has a trivial solution, y(x)=0 for all x. 

The exact solution of (3.4) is given by the formula 

(3.5) y(x) = ln([m2/2A]sec2(!j[x-%I)) 

where m must satisfy the implicit equation 

2 
(3.6) L& sec2f = 1 

The missing initial condition b(X) is given in terms of m and X as 
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(3.7) b(A) = -m tan(n/4) = -m 

Again, the numerical continuation solution agreed exactly with (3.7) in all 

displayed decimal digits. 

Note that our continuation algorithm used numerical differentiation to 

calculate the partial derivatives necessary for the shooting method instead 

of integrating four extra variational differential equations as Wasserstrom 

does in his paper. The numerical differentiation simplifies the programming 

requirements and will reduce the computation required in large order problems. 

Example #3 

The last example is a trajectory optimization problem for a simplified 

missile interceptor taken from the paper of Schneider and Reddy (1974). Al- 

though the aerodynamic model is extremely simplified, this problem is a good 

example with which to test out the continuation algorithm before attempting the 

aircraft equations. The state equations in this problem are nonlinear and 

fourth order, resulting in a nonlinear, eighth order TPBVP. The nonlinear, 

fourth order state equations are 

dxl 
dt= x3 

dx2 
dt = x4 

(3.8) 

dx3 _ 
- - dt -EX Ve 3 

-xzhs ,. ,, 
I 

dx4 
dt= -Ex4ve-x2'hs + u2 - 9.81 

where v = (x3 4T. 

In the equations (3.8), x1 represents a horizontal range variable and x2 

is the height variable. The variables x3 and x4 are the velocities correspond- 

ing to x1 and x2 respectively. The variables u., and u2 are the controls 

(thrusts) for the problem. The parameter h, is a height scale which is taken 

as 6705.6 m in this problem. The parameter E is equal to k ps where ps is the 

sea 1eveT air density and b is the inverse ballistic coefficient for the missile 
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interceptor modeled by (3.8). The optimality criterion for this problem is 

the simplest quadratic criterion, 

J- 
T 

(3.9) (5 
2 +u2')dt 

0 

where T is the fixed final time. The Euler-Lagrange necessary conditions give 

the following nonlinear, eighth order TPBVP: 

dxl 
dt = x3 

dx2 
dt = X4 

dx3 x7 
at--= 

-Ex3ve-x2/hS _ T 

dx4 
dt= 

'8 
-EX4Ve-X2’hS - T - 9.81 

-x2/hs 
[ 3 x7x3+ xax4 

dx7 
dt= 

dx8 x4x3 
dt= -X 6 + EX7 - [ 1 V2 

where x1(O). x2(O). x3(O), x4(O), xl(T), x2(T). are given and x7(T)=xa(T)=0. 

As in (3.8), v = (x3 4T ). In equation (3.10), the variables x5, x6, x7 and 

x8 are the adjoint variables corresponding to x1, x2, x3 and x4 respectively. 

We solved (3.10) by shooting for the missing adjoint initial conditions x5(0), 

x6(0), x7(0) and X8(O). The parameter E (proportional to the inverse bJlliStiC 

coefficient) was used for continuation from c= 0. Note that the E=O solution 
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corresponds to an interception problem with no air density--i.e., a vacuum 

solution. Figures 1, 2, 3 and 4 show the range-height trajectories for four 

values of the ballistic coefficient ranging from 03 to 3.1266~10~ Nm -2 . This 

corresponds to continuing the parameter E from 0 (the vacuum solution) to 

1.9220x 10m4 m-l. The final time T is 20 set and the given initial and final 

conditions are x2(0)= x3(O)= x4(0)=0, xl(O)= -1.524~10~. m, xl(T)=O, 

x2(T)= 4.409 x lo3 m. 
, 

These initial and final conditions correspond to the con: 

ditions for cases 5 and 6 in Schneider and Reddy (1974). Schneider and Reddy 

presented the trajectory of case 6 which corresponds to our Figure 4, although 

the ballistic coefficient for case 6 is about two times that of Figure 4. 

Figure 3 is very close to case 5, although the ballis,tic coefficient for Fig- 

ure 3 is 4.6923x104 NmW2 which is slightly less than the coefficient for case 5, 

namely 5.788~ lo4 Nmm2. The cost associated with Figure 3 (A= 3.542~10~) is 

correspondingly slightly larger than the cost in case 5 (A= 3.415~ 108). 

As the parameter E and the final time T increase, the equations (3.10) 

become more sensitive to slight changes in the initial values of the adjoint 

variables. This is partly due to the increased nonlinearity of the problem, 

but the main trouble comes from the forward integration of the adjoint equations. 

The adjoint equations are unstable in the forward direction and the differential 

equations (3.10) will become infinite in a finite amount of time. One solution 

to the problem which still maintains the shooting method is to use double pre- 

cision instead of single precision accuracy in computations. Alternatively, 

one can use one of the function space methods such as quasilinearization as 

presented in Roberts and Shipman (1968a, 1972) or the back-and-forth shooting 

method of Orava and Lautala (1976, 1977). 
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CHAPTiR 4 

SPT APPROXIMATION OF OPTIMAL CONTROL LAWS 

4.1 Introduction __ 

For the purposes of on-board control of an aircraft we are not interested 

so much in obtaining optimal control trajectories as in obtaining mimal control I , ,.f'i: -- 
laws. The ess,ential difference between these two ways of specifying control is 

that the optimal control trajectory specifies the control to use as a function 

of time :while,the.optimal .control law specifies the control to use as a function 

of state. In principle, the control law is more valuable because it can provide 

feedback correction to perturbations in the optimal trajectory caused by uncer- 

tain environmental factors, e.g., wind gusts, or by errors in the mathematical 

model of the system, e.g., modeling the aircraft as a point mass rather than 

as a rigid body. Computationally, however, control trajectories are much easier 

to compute than optimal control laws because one need only calculate a function 

of one time variable rather than a'function of several state variables. Indeed, 

even if we could calculate the optimal control law exactly off-line, the storage 

requirements would prohibit us from using this as an on-board control for any 

but the most modest sized problems. Suppose n is the number of states for the 

system, m is thei,humber of.controls, and N is the number of discrete values we 

divide any one of the n state variables into for storage. Then to store the 

control law requires storing an n-dimensional array with n x N" elements. In our 

problem we have n= 6 and m= 3. Even if we were willing to accept the crude 

approximation of the control law resulting from using only N=lO discrete values 

for each of the n=6 state variables, we would still have to store a 6-dimensional 

array with 30x lo6 elements. Thus, the well-known "curse of dimensionality" 

forces us to use approximations for both the computation and the implementation 

of optimal control laws. 

In this chapter we present some general methods for approximating optimal 

control laws by means of singular perturbation theory (SPT) techniques. In 

the next chapter we apply these general methods to the minimum time control of 

the six-state aircraft model described in Chapter 2. A brief summary of the 

contents of the present chapter follows. 
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Section 4.2 describes the basic calculation of the SPT approximation to 

the optimal control law for a general dynamic system. To clarify this cal- 

culation we discuss in detail the case of two time scales. The, general case of 

several time scales is discussed more briefly--we present the results and leave 

the details of the derivation to an appendix. Section 4.3 discusses the compu- 

tational difficulties of the SPT calculation described in Section 4.2 and it 

also discusses alternative strategies for overcoming these difficulties in order 

to obtain efficient real-time algorithms. In particular, we discuss in detail 

the use of individual time scales for each individual state variable, lineari- 

zation of the SPT calculation outside of regions of rapid variation and the use 

of suboptimal solutions for the slow time scales. Finally, Section 4.4 discusses 

the problem of the validity of the SPT approximation in various regions of state 

space. For example, by properly scaling the aircraft equations we obtain a 

natural singular perturbation parameter that is inversely proportional to total 

range in the interception problem. In this case, the SPT approximation is better 

the farther the state is from the terminal target states. Near the terminal 

target the SPT approximation breaks down dramatically and implementation of the 

SPT control law leads to a destabilizing feedback law. Thus, in the vicinity 

of the target state one must switch from SPT to some other method of approxima- 

ting the control law. 

4.2 Calculation of the SPT Approximation 

4.2.1 Control Trajectories, Control Laws and the SPT Approximation 

In Section 4.2 we will discuss the SPT approximation of optimal control 

laws of the following generic, autonomous control problem. Let x represent an 

n-dimensional state vector trajectory and let u represent an m-dimensional 

control vector trajectory. The dynamic equations for the system are: 

(2.1) s = f(x,u) 

Suppose that u 1 's a given control input trajectory and let x be the corresponding 

state trajectory obtained from solving the differential equation (2.1) over the 

time interval [t,, a) with the initial condition 
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(2.2) x(t0) = 5 

The cost functional J(u) corresponding to the given input u is defined as the 

integral cost criterion 

/ 

tf 
(2.3) J(u) 4 L(x,u) dt 

t0 

where tf represents the final time at which we require the state to lie in the 

terminal target set. For simplicity we assume that the terminal target set con- 

sists ,of the single state w so that the terminal condition for the problem is 

(2.4) x(tf) = w 

In this generic control problem we will allow the terminal time tf to be either 

free or fixed and we will specify which is the case unless the results are the 

same for either case. 

The optimal control problem is to find a control input u* such that (2.3) 

is minimized by u= u* subject to the condition that (2.1), (2.2) and (2.4) also 

hold. For a given fixed terminal time tf and a given fixed terminal condition 

(2.4), the optimal input u* is a function of the initial condition 5. the ini- 

tial time to and the current time t where tO'trtf. That is, we have 

(2.5) u* = UWO’S) 

By fixing the initial time to and the initial state'c, we can consider the op- 

timal control in (2.5) as a function of the current time t only, i.e., as a 

control trajectory. On the other hand, if we let the initial time to and the 

initial state 5 vary and if we set t=tO, then we can consider the optimal 

control in (2.5) as a function of time and state only, i.e., as a control law. 

Here we are interested in obtaining an SPT approximation of the control law 

and we will do this as follows. Using the SPT methods of trajectory optimiza- 

tion, we will approximate the optimal control function in (2.5) for arbitrary 

'initial times and initial states. We will then set t=tO in (2.5) to obtain 

the optimal control u* to use at time tO with the corresponding state 5. Since 

to and 5 were arbitrary, this procedure will give us an approximate control 
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law to use at any time for any state for which the SPT approximation is valid. 

In Section 4.4 we will see that the SPT approximation is not valid for certain 

values of 5. 

Suppose that the control problem in (2.1)-(2.4) has only two time scales, 

fast and slow, and suppose that x= (x1,x2) where x1 represents the fast com- 

ponents of x and x2 represents the slow components of x. Then the singular 

perturbation approximation to (2.1) is 

(2.6) $ = fl(xJ-4 

(2.7) & = f2(x,u) 

where c is a parameter varying from 0 to 1 and f' is the component of f corres- . 
ponding to the x' component of x, i=1,2. For each E the optimal control 

problem with (2.6),(2.7), (2.3),(2.4) results in a TPBVP similar to the unper- 

turbed (c=l) problem. In terms of the Hamiltonian H defined 

(2.8) H(x,X,u) = L(x,u) + XTf(x,u) 

where X=(A1,X2), we have the perturbed equations 

(2.9) $= - aH 
ad 

(2.10) !$ = - ix 
ax2 

which correspond to (2.6) and (2.7). The SPT approximation of the control tra- 

jectory results from approximating the TPBVP given by (2.6), (2.7), (2.9) and 

(2.10). Typically, this approximation has three parts: (1) an initial boundary 

layer at the initial time to, (2) a reduced order, or outer, solution for t such 

that tO<t<tf, and (3) a terminal boundary layer at the terminal time tf. 

These different parts are determined as follows. The initial boundary layer is 

given by solving 
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(2.11). 

(2.12) 

(2.13) 

(2.14) 

C&O 
d-c 

d^x2 -= 
d-r f2(^x,cI) 

d^h' 
a?- =0 

dR2 
SF-= - * (^x,^A,^u) 

ax2 

t-t, 
where 'c is the fast time scale given by T=L . The initial conditions for 

this TPBVP are the same as the initial condiiions (2.2) for the unperturbed 

(E= 1) problem. That is, 

(2.15) 2(o) = E1 

(2.16) ^x2( 0) = 52 

The terminal conditions are not those for the original problem, however. Instead 

we have the asymptotic terminal conditions 

(2.17) &$ 2(T) = El(O) 

(2.18) JJITJ i2(T) = S(O) 

(2.19) Ta Jim il(-r) = Xl(O) 

(2.20) JJg X2(T) = X2(O) 

where X1, x , X -2 -1 , x2 are the states and adjoints for the reduced order solution. 

That is, X1, E2, x1, x2 satisfy the TPBVP 

(2.21) $ = fl(X,ii) 

(2.22) 0 = f2(X,G) 
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(2.23) $ = - = (T&i) 
ax1 

(2.24) 0 = - E2(i,X,i) 

The initial condition is 

(2.25) 2(O) = $ 

and the final condition is given by 

(2.26) &t ) f = IA? 

Note that the reduced order solution treats X2 as a pseudocontrol which satisfies 

the algebraic equation (2.22) rather than the original differential equation. 

Finally, the terminal boundary layer is given by solving 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

where o 

d%' _ o -- 
da 

dZ2 -= 
da f2( "x,ti> 

d? do=0 

d"x2 -= 
da - = ("x,i,ii) 

ax2 

t-tf 
is;the fast time scale G=~. The initial conditions for this TPBVP 

are the same as the final conditions (2.4) of the original problem. That is, 

(2.31) 5$(O) = J 

(2.32) -2 x (0) = a2 

The terminal conditions are given asymptotically in terms of the reduced order 
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solution as 

(2.33) &Jm- "xl(o) = F1(tf) 

(2.34) gtnm X2(a) = ri2(t,) 

(2.35) #la Xl(a) = X1( tf) 

(2.36) gllm X2(a) = x2(tf) 

After solving (2.11) - (2.36) we obtain three control trajectories: the 

initial boundary layer trajectory C(T), the reduced order trajectory ii(t) and 

the terminal boundary layer G(u). The SPT approximation which is uniformly 

valid over the whole interval tO't<tf is given by 

(2.37) u*(t,tO,S) = G(T) -U(O)] + [ii(o)- u(tf)l 

t-t0 
where T=E 

t-tf 
and o=~--- . Note that we have suppressed the dependence of ^u, 

U and Ci on to and 5 for clarity. Here we have only sketched the SPT method of 

approximating solution trajectories of the TPBVP one obtains for an optimal 

control problem. In Subsection 4.2.2 we will present this approximation in 

more detail for the problem of obtaining control law approximations. The 

reader should refer to Kelley (1973) for more details about obtaining optimal 

trajectory approximations by means of SPT. 

Because we only wish to obtain the approximation of the time function 

t+u*(t,t0,5) at the initial time t=tO, we only need to obtain the initial 

boundary layer terms in the SPT approximation. However, to obtain this term we 

need to calculate the reduced order approximation first. UeuertheZess, we do 

not need to consider the term&a2 boundary Zayer at a22 to obtain the lowest 
order approximt<on. To obtain the higher order terms of the initial boundary 

layer we would have to calculate higher order terms of both the reduced order 

approximation and the terminal boundary layer approximation. The following 

discussion will help clarify this situation. 

Equation (2.37) represents the first term in an asymptotic approximation 
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for th& opt!mal control trajectory u* as a power series in E. The full asymp- 

totic'series- has the form 

- ik(tO)] + i,(t) + [~,(d - i,(t,)]jEk 

_., 

tihere:fik dendtes the ks order term of the initial boundary layer approximation, 

i$'denotes the kg th order term of the reduced order solution and tik denotes the k- 

order term of the terminal boundary layer approximation. Note that we have 

suppressed the 5 dependence of the functions ii,, Gk, Uk in order to maintain 

notatfonat clarity. 

The boundary layer terms c, and tik in (2.38) must have the following 

asymptotic properties: 

(2*39) .' p&l G,(T) = ik(to) 

(2.40) &-@"Ukb) = ik(tf) 

kreover', for reasonably well-behaved problems the convergence in (2.39) and 

('2.40) will be exponential. That is, for some positive constants ak,bk we will 

have 

-a -r 
(2-.41) Iii,(T) -iik(to) 1 < e k 

. Using the information (2.42) and eva for sufficiently large 'c and lo/ 

(2.38) at t-to, we obtain 

luating 

(2.43) u* z 2 {jk(o)Ek + O(e‘bk(tf-tO)'E)ckJ 
k=O 

where, as usual, the order notation O($(E)) denotes a function which decreases 

as fast as I$(&) as c-+0. The SPT approximation in (2.38) is only an asymptotic 

aGpPoximation as E+O. Moreover, in (2.43) the exponential terms 
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o tf-to) /E 
> ck decrease exponentially faster than the terms fik(0)ek:.!. Thus, 

the exponential terms are negligible in the asymptotic expansion, and we have 

(2.44) u* = f iik(0)Ek 
k=O 

From (2.44) we see that in order to obtain the kg order approximation for.u* i 

we need only find the k2 order initia-1 boundary layer approximation 

(2.45) f u.(O)2 
j=o J 

However, note that to obtain the term ii0 in (2.45) we need to calculate the 

reduced order term Go first. To obtain the next term ^uI we must calculate tie 

and UI as well. In general, to obtain the kt_ order initial boundary layer 

approximation we have to calculate the reduced order approximation up to the 

k% order and the terminal boundary layer approximation up to the (k-l)? order. 

The important point to note is that to find the 0th order SPT approximation?. the 

one which we will be using to approximate the aircraft control law in the succeed- 

ing chapters, requires only the calculation of the initial boundary layer and 

the reduced order approximation of the 0th order--the terminal boundary layer 

approximation does not enter the calculation at all. 

The expression (2.43) indicates when the SPT approximation breaks down; 

namely, when the initial time to and the final time tf are very close together 

so that (to-tf)/E is small and the exponential terminal boundary layer terms in 

(2.43) cannot be neglected. In this case, the SPT approximation of u* in terms 

of initial boundary layer, reduced order and terminal boundary layer approxi- 

mations is invalid and the asymptotic approximation in (2.38) is incorrect. In 

particular, one cannot improve (2.44) by including the terminal boundary layer 

terms in (2.38). We discuss this situation further and illustrate it with 

simple examples in Section 4.4. In the next subsection we discuss the details 

of the calculation of the k=O term of (2.44) for the two time scale case. 

4.2.2 Calculation of the SPT Approximation: Two Time Case --_---_.____ 
Althougti the aircraft example considered in this project is treated asza 
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system with more than two time scales, the notational difficulties of presenting 

the.multi-time scale case obscure the basic simplicity of the SPT calculation 

of the approximate optimal control. Therefore, to illustrate the basic method 

we will discuss the case of a two time scale dynamical system in some detail in 

this subsection. In the next subsection, 4.2.3, we will present and discuss the 

results for the multi-time case, but we leave the details of the calculation to 

Appendix 4.1 at the end of Chapter 4. 

Consider the dynamic system 

(2.46) $ = f(x,y,u) 

(2.47) E#f = dX,Y,U) 

where XE X, yeY and UE U. We assume that X, Y, U are vector spaces 

not necessarily one-dimensional. The cost criterion for the control 

which are 

problem is 

(2.48) J(u) 4 
tf 

I 
L(x,Y,u) dt 

0 

where tf is a terminal time which may be either fixed or free. The terminal 

conditions for the problem are 

(2.49) x(t,) = Xf 
. 

(2.50) Ybf) = Yf 

and the initial conditions for the problem are 

(2.51) x(O) = 5 

(2.52) Y(O) = rl 

To find the first term of the asymptotic series (2.44) we need to obtain 

the initial boundary layer approximation, but as we indicated in the previous 

section, we must first calculate the reduced order approximation. The reduced 

order approximation to the system (2.46)- (2.52) is obtained by setting the 

perturbation parameter E =0 in (2.47) and omitting the initial condition (2.50) 
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and the terminal .condition (2.52). If the quantities Z, B, li denote the reduced 

order approximation, then we obtain these quantities by solving the problem-with 

the dynamic system .' .'. 

(2.53) +$ = f(ii,&fi) 

where ji and Ii are both considered as controls for the state 2. In addition, we 

require that the following equality constraint be satisfied: - 

(2.54) 0 = g(XJ,U) 

The cost criterion for the reduced order problem is the same as 

problem (2.48), namely 

for the original 

(2.55) s(y,u) = \ 
tf L(QG) dt 

In the reduced order problem only 

retained. Thus, we have the init 

(2.56) 'X(0) = 5 

and the terminal condition 

(2.57) x(t,) = Xf 

the initial and terminal cond 

ial condition 

itions for x are 

To solve the reduced order problem we define the reduced order Hamiltonian 

(2.58) - - i(X,y,u,Xx) = L(X,T,U) + X,f(X,jG) 

in which ix denotes a reduced order adjoint variable for the state X. The 

minimum principle implies that the optimal controls J* and ii* are chosen so that 

on the optimal trajectory we have 

(2.59) i(i(t),y*(t),Il*(t),X,(t)) = min H(Z(t),y,iAi,Xx(t)) 
Y,fi 

Provided that we can solve the minimization problem in (2.27) for the controls 
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J* and li* in terms-of Z and i x, we have the following two-point boundary value 

problem (TPBVP) for the E and x trajectories: 

(2.60) g = f(x,y*(x,xx),u*(x,xx)) 

di 
(2.61) 2 = - g (x,y*(x,x,) ,u*(x,~,).,X,) 

The boundary conditions for this TPBVP are the initial and terminal conditions 

on 2 given in (2.56) and (2.57). If the terminal time tf is free, then there 

is an additional condition on the Hamiltonian, namely, 

(2.62) H(x(t),S(t),~(t),X,(t)) = 0 

for all times t such that 0~t~t~. 

In order to obtain the initial boundary layer we need to have the optimal 

reduced order adjoint 1; and the optimal reduced order pseudocontrol y* at the 

initial time t=O. Assuming that the terminal state (2.57) is fixed and that 

the initial condition (2.56) is variable, then the adjoint 1; and the pseudo- 

control y* at the initial time t= 0 depend on the initial state 5 and the final 

time tf as follows: 

(2.63) x i;(c,tf) I* = 

(2.64) j* = 4*&t,) 

If the final time is free, then the adjoint and control at the initial time t=O 

depend only on the initial state 5. Having obtained (2.63) and (2.64), we can 

now formulate the initial boundary layer problem. 

The initial boundary layer problem is obtained from (2.46) and (2.47) by 

transforming these equations to the fast time scale ~=t/c. Thus, we have 

(2.65) Ef(hX,&hU) 

(2.66) g = g(^x,jG) 
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where 2, 9, ^u denote the initial boundary layer approximation to the quantities 

x, y and.u. Note that in. this approximation both ^x and 3 are states and ^u is 

the only control. Since we are only interested in the 0th order approximation, 

we set E= 0 in (2.65) to obtain 

(2.67) $ = 0 

!2 (2.68) dT = d^x,i,^u) 

Thus, the state ^x is constant given by the initial condition (2.51), 

(2.69) G(T) = 5 

for all -c>O. Likewise, the adjoint ix corresponding to ^x is constant and is 

given by 

(2.70) ^x,(-c) = X,kst,) 

for all ~20. Using (2.69) and (2.70), we may rewrite the initial boundary 

layer problem as an infinite horizon control problem for 9 and ci alone. The 

dynamic system for this control problem is 

(2.71) $$ = g(s&^u) 

with the initial condition 

(2.72) i(O) = rl 

which is derived from (2.52). The terminal condition for the problem is given 

as an asymptotic limit, namely 

This asymptotic terminal condition is the requirement that the initial boundary 

layer match up with the reduced order approximation. The infinite horizon cost 

criterion for the initial boundary layer problem is given in terms of the cost 
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function L and the reduced order adjoint xx as 

I 

.' 
(2.74) &Ii) = m [L(S,i,^u) +“~,(Lt,)f(Lj,^u)l d-c 

0 

The optimal control trajectory fi* for the initial boundary layer problem depends 

directly on the initial condition (2.72) and the fast time -r, and indirectly on 

the initial condition 5 and the final time tf for the reduced order problem. 
_., . 

Thus, 

(2.75) ^u* = Q*hl,S,tf) 

As we saw in (2.44), we only need (2.75) at -c=O for the SPT approximate optimal 

control law. Thus, the approximate optimal feedback control law u* is 

(2.76) u* = c*(O,n&tf) 

The approximation (2.76) expresses the control u* as a feedback function of the 

current state (c,n) and the time-to-go tf. 

In terms of the preceding discussion the calculation of the SPT approximate 

optimal control law can be summarized as follows (also see Figure 4.2.1): for 

a given state (c,n) and time-to-to tf 

(i) calculate the optimal control adjoint and the pseudocontrol law for the 

reduced order problem in (2.53) through (2.57). Note that the adjoint 

and the pseudocontrol for-the reduced order problem will depend on the 

current x state 5 and the time-to-go tf. 

(ii) Using the adjoint and pseudocontrol from the reduced order approximation 

to define the cost and the asymptotic terminal condition for the initial 

boundary layer problem, calculate the optimal control law for the initial 

boundary layer problem (2.71) through (2.74). Note that this solution 

will depend on the current y state n directly, and indirectly on the 

current x state 5 and time-to-go tf. The current x state and the time-to- 

go enter the initial boundary layer problem only in the asymptotic terminal 

condition (2.73) and the cost functional (2.74). 

Before turning to the general multi-time scale case, let us note that without 

further assumptions the SPT approximation is no easier to solve than the 

78 



_-------- -. 
/“” 

I 

so lve the reduced order control problem 

$$ = fmG) 

0= gmm 

wo = 5, i(t,) = Xf 

J(Y,U) = 
I I 

tf 
o L(X,jU) dt 

- . 
adjoint J$(c,tf) and 

pseudocontrol y*(c,tf) 

Solve the initial boundary layer control problem 

i& g(S,im 

jw) = 0, >P, = Y*K, tf) 

j(i) = 
I 

o~{L(S,9,fi) + +tf)f(S,&^u)I dT 

control G*(O,c,n,tf) 

) Approximate SPT optimal control law 

Figure 4.2.1.-General SPT Algorithm: Two Time Scales. 
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original control problem in (2.46) through (2.52). Although the reduced order 

problem in X is a smaller dimensional problem than the original problem in x and 

y, the initial boundary layer problem in $ could be as difficult to solve as _,, 

the original problem due to the general cost functional (2.74) and the general 

terminal condition (2.73) which depend on the current x state 5. We will discuss 

this point in more detail in Section 4.3. 

4.2.3 Calculation of the SPT Approximation: Multi-Time Case 

The calculation of the SPT approximation to the optimal control law in the 

multi-time case is conceptually the same as in the two-time case. Therefore, 

we will present only the basic algorithm for the calculation in this section 

and leave the details of the formulation and calculation to Appendix 4.1 at the 

end of Chapter 4. Consider the generic, autonomous control system introduced 

in, Subsection 4.2.1 in equations (2.1) through (2.4). Let us suppose that the . 
state vector x has been decomposed into lower dimensional components x1 of 

dimension ni.for i= O,l,...,r. If x has dimension n, then 01 rsn-1 and for 

each i we must have 11 n,.< n. Each component corresponds to a separate time 

scale with x0 representing the slowest time scale and xr representing the fastest 

time scale. The time scales are arranged in order so that for each i the time 

scale for xi+I is faster than the time scale for xi. We now present the al- 

gorithm for calculating the SPT approximation to the optimal control in this 

case of r time scales. The reader may refer to Appendix 4.1 for details of the 

singular perturbation theory formulation and derivation. 

To facilitate our presentation we introduce the following notation. A 

superscript i will always refer to a vector component corresponding to the x1 . 
components of the x vector. Thus, we write f' for the components of the vector 

function f in (2.1). On the other hand, the subscript i will refer to quantities 

corresponding to the it_ boundary layer problem. Thus, we define the pseudo- 

control ui as 

(2.77) Ui = (Xi”,-.’ ,Xr,U) 

for i=O,l,...,r-1 and 

(2.78) ur = u. 
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: . . 
. . 

Similarly, we define ci corresponding to the first it1 initial conditions, . . . . ; 

(2.79) Ei = (EO,...,Ei) . ,-~ .:.; 

for i=O,l,...,r. 

The vector functions gi of (x,u) are defined so that 

(2.80) gi(X,") = (fitl(X,U),...,fr(X,U)) '. I I ;- 

for i'=O,l,..., r-l and so that 

(2.81) !3,(x,u) = 0 

The function gr+l, which is trivially 0, is used only for notationaT~'cpnvenience. 
! 

Algorithm for SPT Approximate Optimal Control Law* 

The control to use with current state 5 and time-to-go tf is calculated as 
follows: 

(i) Solve the reduced order problem: 

‘I 

(2.82) $ = fO(xO,uo) 

(2.83) 0 = gO(xO,uO) 

(2.84) x0(O) = to 

(2.85) x"(tf) = u" 

where w is the terminal condition (2.4) for the original problem, 

(2.86) Jobo) = 
/ 

tf L(x",uo) dt 

0 

where L is the cost criterion (2.3) in the original problem. 

(ii) Let x1 denote the first component of the pseudocontrol uo, and let & 

*Also see Figure 4.2.2. 
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Read in current state 5 
and time-to-go tf 

Solve reduced order control problem 

x0(O) = to, x0(Q) = u” 

I JobJo) = Lo(xo,uo) dt 

i=l X,;il 
I 0 

., I \/ 
Solve i$ initial boundary layer control problem 

dxi . . 
r = f'(Ei-19 x',"i) 

O = gi(Si-l.xi,ui) 

Xi(O) = $, .&) = zi 

Li = Liml + &fi-l 
‘. 

Ji(Ui) = ~~ I , Li(Ei-l’xi,Ui) d-c 

YES 

Approximate SPT optimal control 

Figure 4.2.2.-General SPT Algorithm: Multi-Time Scales. 
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denote the adjoint variable of x0 in the reduced order problem. Note that 
-1 x and io. have the following functional dependence: 

1 (2.87) El = X1(6 t ) 0' f 
I 

I (2-W x, = ~oko,tf) 

/ Let Lo denote the cost criterion L in (2.86). Set i= 1 and go to the next step. 

(iii) Solve the iz initial boundary layer problem: 

. 

(2.89) -$ = fi(Ei-lYxi,'i) 

(2.91) xi(O) = 5’ 

(2.92) “tm) ’ i-l’tf) = E’(c 

00 
(2.93) Ji(Ui) = Li(Eiml,Xi ,Ui) dT 

where the cost criterion Li for the it!? initial boundary layer problem is defined 

recursively in terms of Li 1 as 

(2.94) Li(Si-lSxiSui) =Li-1(Si_Z.Si-1,xi,Ui)+r;i-l~Si-l,tf)fi-1(5i_l,Xi,Ui) 

(iv) If i<r, denote the first component of the pseudocontrol ui calculated . 
in step (iii) by j?'+l 

. 
and let Xi denote the adjoint corresponding to x' in the 

iz boundary layer problem. Update i by 1 and return to the beginning of 

step (iii). 

Stop if i =r; u= ur gives the SPT approximate optimal feedback control for 

the current state 5 with time-to-go tf. 

The procedure for calculating the O* order SPT approximation of the optimal 

control law consists of solving a hierarchy of lower dimensional optimal control 
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problems. At the i=O level of the hierarchy, which corresponds to the slowest 

component of the state variable, we must solve the reduced order control problem. 

This is an no dimensional problem with finite terminal time, which may be free 

or fixed. At the subsequent levels for i>O, which correspond to faster com- 
.th ponents of the state variable, we must solve the I-- initial boundary layer 

control problem. This is an ni dimensional problem with infinite terminal time, 

i.e., it is an infinite horizon control problem. 

At each level i> 0 of the hierarchy the cost criterion and the asymptotic 

terminal condition for the control problem is defined recursively from the pre- 

vious level by the relation (2.94). .th' Thus, the cost control problem at the l- . 
level of the hierarchy depends on the components sJ, for Orj 2 i of the current 

state 5. 

Once the final level of the hierarchy is reached, the SPT approximation to 

the optimal control for the current state 5 and the time-to-go tf is the optimal 

control u= ur one obtains from this level. 

4.3 Computational Aspects of the SPT Approximation 

4.3.1 Computational Difficulties of SPT Approximation 

In Subsection 4.2.3 we decomposed the original optimal control problem 

(2.1)- (2.4) of state dimension n into r+l subproblems of dimension ni for the 
it!! subproblem, i=O,l,...,r. Since we will have ni<n for each i, the ig 

subproblem should be computationally easier to solve than the original n dim- 

ensional problem. However, the r+l subproblems are coupled in such a way that 

problem to define the cost 

If we define the integers Ni 

the ig problem requires results from the (i-l)% 

and terminal condition in the ig level problem. 

as the sums 

. 

(3.1) Ni = ii 
j=O 

nj 

then the control subproblem at level i depends on Nit1 parameters (or Ni para- 

meters if the terminal time for the or iginal prob lem is free). These para- . 
meters consist of the current state components gJ for O<j<i and the time-to- 

fh 
90 tf' At the rfl level, the final level, the control subproblem depends on 
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Nr+ l= ntl parameters --namely, the entire current state 5 and the time-to-go 

tf. Thus, the final level of the control subproblem depends on as many parameters 

as the original problem and may be as difficult to solve. Moreover, it is es- 

sential to compute this final subproblem in order to obtain a realistic feed- 

back control for the original control problem. For if we stop the computation 

process at a level i<r, then we implicitly will be assuming that we can directly . 
control the states xJ for j >i. In practice this means that the u-controls 

resulting from the ith level will not provide feedback correction for these . 
higher level states xJ for j>i. 

Thus, the SPT approximation presents us with a dilemma. To obtain a feed- 

back control law that will correct deviations from optimal of all state com- 

ponents we need to compute the final level of all the subproblems up to and in- 

cluding the final level. But to obtain a computational advantage over solving 

the original problem exactly (without SPT) by using the SPT approximation we 

need to stop our computation at some level before the final level. In the fol- 

lowing three subsections we discuss three different strategies for making the 

SPT algorithm computationally efficient. 

4.3.2 Complete Time Scale Separation 

One possibility for making the SPT algorithm more efficient is to subdivide 

the original problem into a large number of small dimensional subproblems and 

to develop fast algorithms for solving these small dimensional optimal control 

problems with general cost criteria and general terminal conditions. The 

extreme case of this procedure is to choose r= n-l so that ni=l for each 

i= O,l,...,r. This is the approach Calise (1977, 1978) has taken in construc- 

ting feedback controls for aircraft by means of singular perturbation theory 

methods. Making each subproblem one-dimensional allows one to substitute a 

sequence of static optimization problems for the original dynamic optimization 

problem. The drawback of this procedure is that the assumption that each one- 

dimensional component of the state operates,on its own time scale will be un- 

realistic when some components of the state are closely coupled together. 

The transformation of the dynamic control problem to a static optimization 

problem is based on the following simple observation. Suppose that we have a 

dynamical system with a one-dimensional state variable x and dynamic equation 
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given by 

(3.2) 
.dx 
z = fowd 

and cost criterion given by 

'. 
'. 

, : ,/' 
-. 

/ 

co 

(3.3) J(u) = L(x,u) dT 
0 

The minimum principle asserts that the optimal adjoint variable XT; for a given 
state x is chosen so that we have 

(3.4) c = min {L(x,u)+A~f(x,U)3 
U 

where c is a constant not depending on x. From (3.4) we see that if u is a 

control such that f(x,u)>O then ! 

(3.5) .* * q 

and if u is a control such that f(x,u)<O then 

Defining m(x) and M(x) so that for each x we have 

(3.7) m(x) = yx{* : f(x,u)+ 

(3.8) M(x) = rn;n{w : f(x,u)<C$ 

we obtain the following upper and lower bounds on the adjoint Xc: 

(‘3.9) m(x) 5 AZ s M(x) 

If the optimal control u* for the given state x is such that f(x,u*)*O, 
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then the adjoint A; must be equal to either its upper or lower bound in.(3.,g*) 

and the optimal control u* is found by solving the corresponding minimization " 

(3.8) or maximization (3.7). However, for some states x it may be optimal to 

choose u* such that f(x,u*)= 0, and in that case the minimum'principlk (3.4)' .. 

gives no information on the adjoint variable Xc. Nevertheless, the condition 

that the state x tends asymptotically to a terminal state w implies that 
1 

f(x,u*)=O for optimal u* if and only if X=W. Note that such an asymptotic 

terminal condition is assumed for each initial boundary layer problem in the% i 

SPT approximation. Note also that without assirming such an asymptotic terminal 

condition it may be possible.,to .achieve a lower cost (3.3) with a state trajec-' 

tory which does not tend to any limit, e.g., a periodic trajectory. (. 

Therefore, let us add to the control problem (3.2) and (3.3) the asymptotic 

terminal condition 

(3.10) $jg X(T) = w 

Then if u*(x) denotes the optimal feedback control for state x, we have 

f(x,u*(x))=O if and only if x=w. In this case, u*(x) is found from solving 

the static problem (3.7) when x<w and from solving the static problem (3.8) 

when x > W. The corresponding optimal adjoint is equal to m(x) if xcw and is 

equal to M(x) if X>W. This procedure for determining the optimal u and Xx in 

terms of x is illustrated in Figure 4.3.1. 

To see how the preceding considerations apply to the mu1 ti-time. scale 

control problem such as we have illustrated in Figure 4.2.2, let us assume that ~ 
each of the initial boundary layer control problems in Figure 4.2.2 is one- 

dimensional, i.e., assume that ni=l for each i =1,2,...,r. Then the initial 

boundary layer problems can be solved as a sequence of static optimization prob- 

lems as illustrated in Figure 4.3.2. In Appendix 4.2 of this chapter we show 

that this static optimization problem has a solution under very general conditions. 

Although we avoid having to solve any TPBVP's or dynamic trajectory optimi- 

zation problems- fo- the initial boundary layer problems, the coinplete separa- 

tion of time scales in the boundary layer problems may result in a static op- 

timization problem which is no less difficult to solve than the corresponding,‘ 

dynamic optimization problem. In particular, note that as before the cost 

criterion 'and ttie .terminal condition at each level depend on the computations of 

87 



c - L(x,u) maximize m minimize * 

for u such that x<w x>o for u such that 

f(x,u) <o c ? f(x,u)> 0 

h;2 = maximum value X* = minimum value 
X 

u* = maximizing u X=W u* = minimizing u 

Figure 4.3.1.-Feedback Control Algorithm for One-Dimensional State. 



Solve reduced order control problem 

dx" 0 0 
5 = f (x ,u,) 

0 = go(xOdJo) 

x0(O) = 50, x0( tf) = u" 

Jo(uo) = 
/ 

tf 
0 

Lo(xo,uo) dt 

i=l x0, x1, c= LO(sO,uO) + xOf(~,,uO) 
1. I \I 

c-Li(si’ui) 
maximize . 

f'(CiS"i) 
for ui such that 

f'(Si,"i) O 
4 

T;, = maximum value 

c-Li(Si,ui) 
minimize -. 

f'(E;iS"i) 

I si = xi 

(X’,Ui) = uiml 
-:_1 

(maintain control 
from previous level) 

NO 

Approximate SPT optimal control 
u* = u r 

+ 
for ui such that 

fi(Si,ui)' O 
Xi = minimum value 

Figure 4.3.2.'-Feedback Control Algorithm for Complete Time Scale Separation. 
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the previous 

functions of 

level, i=r, 

terion functi 

until the pre 

level. Thus, the cost criterion and the terminal condition as 

si become more and more complex as i increases. In the highest 

we will have a complex nonlinear programning problem whose cri- 

on L, depends on 5, the current state, and cannot be determined 

vious r-l initial boundary layer problems have been solved. 

4.3.3 Suboptimal Approximation of the Reduced Order Solution 

A second possibility for increasing the efficiency of the SPT algorithm 

is the use of suboptimal approximations for the reduced order solution. As 

shown in Figure 4.2.2, the reduced order control problem is the first step in 

the SPT algorithm for approximating the optimal control law. By.approximating 

the solution of the reduced order problem, we may be able to solve a reasonably 

large dimensional reduced order problem in an efficient manner and leave a small 

dimensional initial boundary layer problem to solve in the next step of the SPT 

algorithm. In this way, we may reduce the computation time for the whole al- 

gorithm and at the same time, because we can consider a larger dimensional 

reduced order problem rather than an artificially small dimensional reduced 

order problem, we may also improve the accuracy of the SPT approximation. 

For simplicity let us only consider the suboptimal approximation of the 

reduced order solution in the case of two time scales as in Subsection 4.2.2. 

There is no difficulty in applying the same procedure to the multi-time scale 

case. In order to go from the reduced order control problem to the initial 

boundary layer problem (see Figure 4.2.1), it is necessary to have the adjoint 

"c of the reduced order state variable 2. Not only does this adjoint define the 

cost criterion for the initial boundary layer problem,' it also determines the 

asymptotic terminal condition y* of the initial boundary layer problem as a 

solution of the minimization: 

(3.11) min {L&&9 + X;f(E,jG): g(<,j,U) = 01 

Unfortunately, we may not have the adjoint 1; immediately available. For ex- 

ample, we might be given a suboptimal feedback control U,(X) and y,(X) derived 

from heuristic considerations or from previous experience and have no corres- 

ponding adjoint. Moreover, if the reduced order control law is not optimal, 

it is not clear what the adjoint of the suboptimal reduced order state should be. 
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To resolve these difficulties we must consider the behavior of the initial 

boundary layer solution. As we noted previously, this problem is an infinite ‘ 

horizon control problem with the infinite time cost criterion defined in (2.74). 

Assuming that the boundary layer state 9 has an asymptotic limit as in (2.733, 

then it is not hard to see that this limit must be the first component y* of -. 

the solution of the minimization problem in (3.11). That is, y* is the optimum 

steady state control' for the reduced order problem with cost (2.74). Thus, we 

should choose the adjoint 1; so that the sol:ution of (3.11) gives a reasonable 

suboptimal control for the reduced order control problem. 

For example, if we are given the suboptimal control iis,J, for the reduced 

order problem and we wish to find an adjoint which gives back this particular 

suboptimal control, then we must find x; such that Us,ys is the solution of .' 

(3.11). For example, if Us and Js do not occur on a constraint boundary of J 

or ii, then we may determine the adjoint 1 ; by solving the simultaneous linear 

equations 

(3.12) g (S,~,,ii,) + "; g (s,j;,,u,) + 1; g (LY,,ii,) = 0 

(3.13) g (s,jpis) + x; g (s,jp,) + ^; g (LY,~u,) = 0 

Note that unless the dimension of the x state is equal to the dimension of the 

u control, there will not be the same number of equations as unknown adjoint 

variables in (3.12) and (3.13). Thus, in general we must expect that the sim- 

ultaneous equations in (3.12) and (3.13) will have either no solutions or in- 

finitely many solutions. If the equations (3.12), (3.13) have no solution, 

then we cannot obtain ";: with this method and we must find some other way of 

choosing an appropriate adjoint 1 c for the reduced order control problem. 

Instead of trying to find an adjoint 1; which will yield a given reduced 

order control Js,i& as the solution of (3.11), let us find an adjoint which will 

yield a better reduced order control than the control ys,i&. It is clear that 

such a method would be preferable to the first method described above, but it 

is not clear how we aan find the desired adjoint. Fortunately, Bellman's (1954, 

1957, 1961) technique of monotone approximation provides exactly the solution we 

are seeking. 

Since monotone.approximation is an application of the ideas of dynamic 
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programming, we start by briefly describing the role of dynamic programming in 

optimal control. The reader should refer .to.Bellman (1957) for details. Sup- 

pose that we have an autonomous dynamic system 

(3.14) g = f(x,u) 

with the cost criterion 

T 
(3.15) L(x,u) dt + C(x(T)) 

and a fixed terminal time T. Let the state have the following initial condition 

(3.16).* x(0) = 5 

Note that for mathematical convenience we have fixed the terminal time T and we 

have omitted a terminal condition in favor of the terminal cost term C in the 

cost criterion (3.15). 

Let V*(<,T) denote the minimum possible cost (3.15) over all admissible 

controls u. That is, let 

(3.17) V*(E J) = min J(u) 
U 

We can interpret V*(<,T) as the minimum cost-to-go from the state 5 with time- 

to-go T. The minimum cost-to-go V* satisfies the following functional equation: 

(3.18) F = min {L(c,u) + $Y f(c,u)} 
U 

with the boundary condition 

(3.19) v*Lm = C(E) 

If u*(c,T) is an optimal control to use at state 5 with time-to-go T, then (3.18) 

implies 

wo) F = L&&*&T)) + g f(E,u*(E,T)) 
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Monotone approximation uses the boundary condition (3.19) and the linear equa- 

tion (3.20)'in V* to find a cost-to-go function V, corresponding to a given 

suboptimal control law us. Thus, suppose that V, satisfies 

w w 
(3.21) ti = Lk,usk,T)) + T$ f(S,u,(S,T)) 

with the boundary condition (3.19). Then if we generate a new suboptimal control 

us by minimizing the function 

(3.22) avS 
L(E,u) + r f&4) 

with respect to u, the new cost associated with this new control law u& will be 

less than the cost for the control law us. By repeating this process one obtains 

a sequence of cost-to-go functions which decrease monotonically to the optimal 

cost-to-go v*. 

To obtain an appropriate adjoint to use in the initial boundary layer prob- 

lem, we only need to apply the monotone approximation method once. Thus, given 

a suboptimal control law us , we solve (3.21), (3.19) to obtain V,(E,T). The 

adjoint corresponding to the current state 5 with time-to-go T is then the partial 
. . avS derivative aS. Thus, we choose as an adjoint the variation with respect to 

the initial state or the cost-to-go from that state. 

To summarize, the monotone approximate method for obtaining the reduced 

order adjoint consists of the following steps: 

(i) Solve the linear partial differential equation 

(3.23) ;+ = L(E,~s(SJ)~~s(S,T)) + g f(E~J,(E.T),i,(E,T)) 

with an "appropriate" terminal condition of the form 

(3.24) V(LO) = C(S) 

If a terminal condition Xf is specified for the reduced order control problem 

rather than a terminal cost C as above, then we may introduce a fictitious cost 

such that C(X) =0 for X= Xf and C(E)=+a. A finite cost in (3.24) would be more 
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tractable mathematically and computationally, and perhaps more realistic than 

a.fixed terminal condition. After solving (3.23), (3.24), obtain the adjoint 1; 

from 

,625) ~,&J) = g (SJ) 

(ii) Using the adjoint calculated in step (i), minimize the function 

(3.26) L&.,Y,u) + X,(S,T)f(S,Y,$ 

with respect to the reduced order controls Yj and y. The solution of this mini- 

mization problem provides the necessary asymptotic terminal condition for the 

initial boundary layer control problem. 

To,implement this method for finding the reduced order adjoint, we must ob- 

tain an efficient solution to the partial differential equation in (3.23). 

Solving partial differential equations is never an easy task, and the computa- 

tion of the adjoint xx would most likely have to be done off-line. Nevertheless, 

note that for a given suboptimal control the solution of (3.23) will be much 

easier than the solution of the nonlinear dynamic programming partial differential 

of techniques 

In Figure 4.3.3 we have illustrated the bas 

optimal reduced order control. Note that in the 

use this suboptimal strategy at any level of the 

compute a suboptimal solution of the iG initial 

equation (3.18) for the optimal cost-to-go. Moreover, a number 

are available for solving and approximating the linear problem. 

ic procedure of 

multi-time sea 

SPT algorithm. 

boundary layer 

using a sub- 

le case we may 

Thus, we may 

control problem 

to use in de- and use one of the above methods to compute an adjoint variable 

fining the cost criterion for the (i+l)G problem. 

4.3.4 Linearization of the Boundary Layer Problems 

A third possibility for increasing the efficiency of the SPT algorithm is 

the linearization of the initial boundary layer control problem around the 

nominal provided by the first component of the pseudocontrol of the reduced 

order solution. Implicitly, this approximation assumes that the "fast" boun- 

dary layer variables are approximately in equilibrium; that is, equation (2.54) 

is approximately correct. As we have done in the previous two subsections, we 
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Read in current state (E,q) 
and time-to-go tf 

I 

a------,-- l 
Solve reduced order control problem (off-line) 

suboptimal 
control law us 

r 
Generate adjoint function Xx 

'using monotone approximation 

I 
Solve for new 

' pseudocontrol u; ,.I 

I 
_------ ------ ------------- 

r 

A 

ii* 

v I 
Approximate SPT control 

u* E (j* 

Figure 4.3.3.-SPT Algorithm Using Suboptimal Reduced Order Solution. 
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will first discuss the two time scale case in detail and then briefly discuss 

the multi-time case. 

Consider the two time scale problem in Subsection 4.2.2 and let the current 

x state be fixed at 5. Let I;, y*, and u* be the corresponding optimal adjoint 

1, and pseudocontrols y, U to use for this value of the x state in the reduced 

order control problem. We are going to 1,inearize the boundary layer control 

problem (2.71)- (2.74) around these optimal reduced order values., In the 

following derivation let us denote quantities evaluated at the optimal reduced 

order solution by a bar, e.g., 3. Let 6y denote i-j* and let 6u denote 6-G*. 

Expanding (2.71) to first order gives 

(3.27) 6y' = f$ 6y + g 6u 

.~ 
d( where the derivative with respect to 'I is denoted by a prime, i.e., ( )' =dT . 

Let us define matrices A and B as 

(3.28) A = $ (E,J*,U*) 

(3.29) B = $ (<,y*,U*) 

Then (3.27) represents the time invariant linear system 

(3.30) 6y' = ABy + B6u 

To obtain the quadratic cost criterion for the linearized problem we first 

define the Hamiltonian for the boundary layer problem, that is, -1 

(3.31) H(?,^u) = L&A?,% + i;f(L%^u) + iyg(E,&;) 

From Bryson and Ho (1975) we see that the cost criterion for the‘linearized 

boundary layer problem is defined in terms of the following three'matrices which 

consist of the second order derivatives of this Hamiltonian. 
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(3.33) z R = ayau 

'zi (3.34) s = 7 
au 

.In the expressions (3.32)- (3.34) the bar denotes that the expression is evalua- 

ted at the reduced order nominal value. Thus, for example, we have 

(3..35) 

: ., 

zi a21: 
-=z 
ay2 

+ix$ (E&i) + iy 4 
w 

Evidently, we need to calculate the Lagrange multiplier xy in the reduced order 

problem if we are going to linearize. For example, we can accomplish this by 

solving the linear equations 

(3.36) $+ ix%+ zyg= 0 

(3.37) 

Note that some of these equations will be redundant for the purpose of obtaining 

x 
Y' 

Using the expressions (3.32)- (3.34), we can write the cost criterion for 

the linearized problem as 

%byTQ6y + 2gyTR6u + &.I~SCSU] dT 

Hence, the linearized approximation of the boundary layer control problem gives 

a time invariant, linear quadratic regulator problem. The feedback control is 

simply calculated-., by solving a system of quadratic equations (the so-called al- 

gebraic Riccati equation) to obtain a constant gain matrix G. For this problem 

G is obtained by solving the following equations for G and K simultaneously: 

(3.39) G = -[s-+KB+R)]~ 

97 



(3.40) Q + 2RG + GTSG + KA + KBG = 0 -- '- :i : '. ,, '.' ,, 

The optimal control law for &u in terms of &y is then 

(3.41) 6u = G6y 

To summarize, the procedure for finding.the linearized boundary layer control is 

to compute the matrices A, B, Q, R, S from .(:3.28), (3.29), (3.32), (3.33), (3.34) 

for the current value of the reduced order state, ,and then to solve the equations 

(3.39), (3.40) to obtain the gain G which gives the boundary layer control law 

in (3.41). 

In the multi-time scale case we may carry out the linearization at any 

level of the SPT algorithm. Thus, it may be appropriate in some cases to lin- 

earize the control problem for the i2 control subproblem around the nominal 

values proved by the (i-l)2 control subproblem. Other variations are also 

possible. For example, we may decide to linearize the,boundary.layer problem 

described above around y* only and maintain the nonlinear dependence of the boun- 

dary layer problem on the control ii. In any case, the decision whether or not 

to linearize is determined by the "error" between the actual‘ va'lue of's variable 

on the'i% level of the SPT.algorithm and its "optimal"' 
._., 

value on the (iil)G 

level. By monitoring this error an algorithm can decide when to switch from a 

more accurate and also more difficult nonlinear control to a more,efficient 

linear approximation. One such algorithm is illustrated in Figure 4.3.4. 

Before concluding this section, let us note some of the advantages and dis- 

advantages of the linearization procedure described in this subsection. The 

naajor disadvantuge is that we me using a Z&ear mode& for a non.Zinear system. 
In particular, this approximation will be valid only when the boundary layer 

states are sufficiently close to their "optimal" values calculated in the re- 

duced order solution. The major advantages of linearization are'that.(l) the 

linear control is easier to compute than a nonlinear control, and (2) because 

the linear control is easier to compute, we may treat a larger dimensional boun- 

dary layer control problem than otherwise: thus, we may avoid having to intro- 

duce multiple time scales artificially in order to obtain a tractable computation. 

Note that once a linear problem is obtained it is possible to apply the General- 

ized Multiple Time Scales method (GMS) of Ramnath and Sandri (1969) to improve 
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Figure 4.3.4.-SPT Algorithm Using Linearized Boundary Layer Problem. 
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the efficiency of computation. The time scales for the linearized problem are 

determined by checking the eigenvalues of the linear system and thus, we can 

naturally determine the perturbation parameters. This multiple time scaling of 

the linear system decomposes the control problem and reduces the computation 

required. In addition, the time scaling improves the numerical accuracy of 

computation. This latter aspect is most important in view of the numerical sen- 

sitivity of the linearization. This sensitivity arises from the presence of 

tabular, non-analytical functions (aerodynamic coefficients) whose derivatives 

must be given for the linearization. In Figure 4.3.5 we have sumnarized the 

principal advantages and disadvantages of the three strategies we have discussed 

in this section for making the SPT algorithm more efficient. 

4.4 Accuracy of the SPT Approximation 

4.4.1 State Space Dependence of the Accuracy of the SP 

The SPT algorithm discussed in the previous sections gives a control law 

u(c,T) for the control problem (2.1)- (2.4) in terms of the current state 5 and 

the time-to-go T=tf-to. Let J(u;E,T) denote the cost-to-go starting at the 

state 5 with time-to-go T and using the control law u. If V*(c,T) is the mini- 

mum cost-to-go from the state 5 with time-to-go T, then the expression e(u;c,T) 

given by 

(4.1) e(u&T) 4 J(u&T) - V*(W) 

defines a measure of the accuracy of the control law u compared to the optimal 

control. Since V* is the optimal cost, it is clear that e is always nonnegative. 

However, as the initial state 5 and the time-to-go T vary, we may expect that 

the error e will vary also, being greater in some regions and smaller in others. 

Let ^u specifically denote the SPT approximate optimal control law. For 

any fixed initial state <*w and time-to-go T the error e(fi;c,T) depends on the 

singular perturbation parameter E. As E decreases to 0 we expect the error to 

approach 0. However, the error does not approach 0 uniformly in 5 and T. That 

is, for a fixed perturbation parameter E, the error may vary greatly for differ- 

ent values of 5 and T. In this section we wouZd like to show that the SPT ap- 

proximation error increases as the initia2 state 5 approaches the termina2 state 

0. That is, as one nears the term&z2 target state, the SFT approximation breaks 
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SUMWRY OF PRINCIPAL ADVANTAGES AND DISADVANTAGES OF 
COMPLETE TIME SCALE SEPARATION, SUBOPTIMAL REDUCED ORDER SOLUTION, 

AND LINEARIZATION OF BOUNDARY LAYER CONTROL PROBLEM 

1. Complete time scale separation (see Subsection 4.3.2) 

Advantage: Reduces dynamic trajectory optimization 
problem to static optimization problem 
for control law. 

Disadvantage: Introduces multiple time sea les arti- 
ficially and will be inaccurate if some 
state variables are highly coup led; the 
sequence of static optimization problems 
may be as difficult to solve as the ori- 
ginal dynamic problems for a large dimen- 
sional problem where many time scales are 
necessary. 

2. Suboptimal Reduced Order Solution (see Subsection 4.3.3) 

Advantage: Allows one to avoid solving the reduced 
order problem exactly; thus, it is pos- 
sible to treat larger dimension reduced 
order problems. 

Disadvantage: The suboptimal adjoint function must 
be computed and approximated off-line, 
although this should be easier to do 
than to compute the optimal adjoint. 

3. Linearization of then Boundary Layer Problem (see Subsection 4.3.4) 

Advantage: Linearized controls can be computed ef- 
ficiently and larger dimension boundary 
layer problems can be treated. 

Disadvantage: Linearization is valid only when the 
.boundary layer state is near its optimal 
reduced order value; thus, linearization 
essentially gives only a control to track 
the reduced order solution, and it will 
be able to do this only as long as the 
pseudocontrol for the reduced order prob- 
lem does not jump discontinuously. 

Figure 4.3.5.-Comparison of Advantages and Disadvantages of Complete Time 
Scale Separation, Suboptimal Reduced Order Solution and 
Linearized Boundary Layer Approximation. 
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dowz. Before discussing this breakdown in more detail, however, let us note.that 

the opposite phenomenon is true when the initial state is far from the terminal 

target, at least in some cases; that is, the SPT approximtion improves 'QS the 
initia2 state 5 increases its distance from the tertinaZ state w. 

As we will see in the next chapter, the aircraft dynamical system has the 

general form 

(4.2) 2 = f(y,u) 

(4*3) dt * = g(y,u) 

where the right hand side of (4.2) and (4.3) do not depend on x. In the aircraft 

problem, (4.1) corresponds to the equations for the horizontal position coordi- 

nates of the aircraft. The variables y are such that either, through direct 

state constraints or by definition (as in the case of angles) each component of 

y has a maximum value. In the aircraft example y includes height, velocity, 

heading angle and so on. The x variables, on the other hand, have a potentially 

infinite range. If we scale the variables x and y such that the scaled quan- 

tities x' and y' attain a maximum variation of order of magnitude 1, and if we 

scale the time variable t so that the scaled time t' varies from 0 to 1, then 

the original dynamic system (4.2), (4.3) is transformed to 

(4.4) g = f'(y',u) 

(4.5) E& = g’(y’,u) 

where the parameter E is essentially the ratio of the maximum variation of y to 

the initial distance from x to its target state xf. Moreover, the functions f' 

and g' in the aircraft example do not depend on the parameter E. Thus, in the 
minimwn time problem for the aircraft exampZe there is at Zeast one natural 

singuZar perturbation parameter, and this parameter is proportiona to the 
distance from the target. Since we expect that the SPT approximation is best 

when E is small, we expect that the SPT approximation for the aircraft will be 

good when the range is sufficiently long, but that the SPT approximation will 

break down near the target when the range is short. Note that for the example 
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-we have considered, the SPT approximation starts to break down when the scale 

param.eter E in (4.4), (4.5) increases above .07. This corresponds to target 

distances less than 163 to 176 Km. 

4.4.2 _ Inaccuracy of the SPT Approximation'Near the Terminal 'Target State - 
It is the purpose of this subsection to show that one must be especially 

careful when using SPT approximations to obtain closed loop, control law 

approximations rather than open loop, control trajectory approximations. At the 

terminal time the SPT control law will not be the asymptotic approximation of 

the actual optimal feedback control law. To illustrate what goes wrong we will 

consider the following simple linear quadratic. control problem. 

(4.6) ~2 = u 

with the initial and terminal conditions x(O)=5 and x(T)=l, respectively. The 

cost criterion for the problem is 

(4.7) J(u) = 
/ 

T%(X2 +u2) dt 
0 

The exact optimal control law is easily found to be 

(4.8) u(W) = 
2emTiE _ x(l+e -~T/E) 

(l-e -2Tj~) 

The 0th order SPT approximation, the first term of (2.6), is also easily found 

to be 

(4.9) $(E,T) = -x+e -T/E 

Note that we have written 'I%' in (4.9) to indicate that both the ti and "u (as 

well as is) terms are accounted for. 

To see how the SPT approximate control law in (4.9) differs from the exact 

optimal feedback control law given in (4.8), we approximate the latter to first 

order. First consider the region in which the time-to-go T satisfies T>>E. 

The optimal feedback law (4.8) is then approximately, to order O(e -T/E) , 
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(4.12) h) = -(ccl) 

In this control problem (4.6), (4.7) one desires to reach the terminal 

target x=1 by a fixed terminal time, say tf=l. Then as the current time t 

nears the terminal time tf the optimal control law (4.8) takes this into account 

through the time-to-go T=tf-t becoming small. As the time-to-go T becomes 

smaller, the optimal control law places more emphasis on hitting the target 

exactly at the right final time tf and less importance on reducing the quadratic 

cost. The SPT control law (4.9), on the other hand, resembles a linear regula- 

tor control around the terminal state x=1. Although such a control would steer 

the state toward x=1, it would not be able to do so in a finite amount of time. 

Hence, at the terminal time tf the SPT controlled state will miss the desired 

terminal state. To see more clearly what trajectory the SPT control produces, 

let us integrate (4.6) with u=i. Then we find that if 5 is the initial state 

with time-to-go T, the fi,nal state x(tf) using SPT control will be 

(4.13) x(tf) = e -T/E< + s (1-e-2T/E) 

If x= 1 is the desired terminal state, then the error between this and the actual 

terminal state (4.13) is given by 

(4.14) 1 - x(tf) = 1 - 5 + 5 e-2T'E - emTjEg 

Thus, if the initial state 5 is such that eWT'c 5 is small and the initial time- 

to-go T is large compared to E, then the final error at the terminal time tf 

will be approximately 

(4.15) 1 - x(tf) = 1 - 5 

In fact, for any initial condition 5, if the initial time-to-go is large enough, 

then (4.15) will be true. 

The situation is worse than indicated by the approximation of u given in 

(4.12) ! If we use the SPT control all along and the state x approaches too 

closely to its optimal reduced order value X*= 0, then x will still be close to 

the reduced order value at the final time. To be exact, if at any time we ever 
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have x < 5, then x(tf) < E. 

A similar phenomenon occurs for more complex systems than the simple one 

we have examined here. Essentially, the SPT control follows the reduced order 

solution and is unable to anticipate discontinuities in the reduced order solu- 

tion in order to cross the jump of the discontinuity in the required amount of 

time. In this example the reduced order value of x was 0 and the desired ter- 

minal value was 1. Although the SPT control law begins to steer x away from 

the reduced order value 0, it does not do it fast enough to meet the terminal 

value and the resulting error (4.15) is fairly,large. 

The trouble we have described is not limited to the terminal region: so- 

called internal boundary layers exhibit a similar behavior. To describe the 

situation, let us refer to the two time scale problem of Subsection 4.2.2. In- 

ternal boundary layers occur when the reduced order control problem gives a 

pseudocontrol y*(c,T) with discontinuities for some values of current x-state 5 

and time-to-go T. Such discontinuities indicate that the real y-state, which 

must be continuous, changes very rapidly. This rapid change is approximated 

by a boundary layer and this requires us to modify our basic time scale approxi- 

mation (2.38) of the optimal control u * for the full system as follows: 

(4.16) u* = 2 {[ii, 
k=O 

-fik(tO)l + [i,(P) -'k(ti)I + 'k(t) 

+ ,$b) - $+)I} Ek 

where ti is the time at which the reduced order solution exh 

in-the pseudocontrol y* and p is the fast time scale for the 

layer 
t-ti 

given by p=- . 

ibits a d 

internal 

iscontinu 

boundary 

The argument wimade in Subsection 4.2.1 concerning the terminal boundary 

layer also holds for the, internal boundary layer--as long as the time t is not 

close to the time ti. We may neglect the contributions ii, from the internal 

ity 

boundary layer. Near to the internal boundary layer time the SPT approximation 

breaks down in the same way that it did at the terminal time. Essentially, the 

SPT control law does not anticipate the sudden rapid change in the y variable. 

An optimal control would begin steering y across the discontinuity before the 

internal boundary layer time ti was reached. The SPT control, on the other 
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hand, does not do this until ti is reached, and then it steers y to the reduced 

order value 3*. after ti. , I 

At the presen.t timezwe do not have.a solution to'this fundamental problem 

of using SPT control law approximations'near the terminal target or at internal 

boundary layers,.but 'clearly the problem is essential ,for any application of 

SPT.methods to obtain- feedback control laws.. 'At the very least, it will be 

necessary to identjfy the regions where the SPT feedback law breaks down so that 

one may switch from the SPT control to a better control law. For obtaining the 

control law near the terminal target, it may be possible to develop useful ap- 

proximations different from the SPT approximation. For example, linearizing' 

some of the state variables around their terminal values may prove useful. How- 

ever, whatever method of approximation is used near the terminal target, the 

important problem to solve will be to determine how to match this approximation 

with the SPT approximation-- in other words; to determine when and how to switch 

from one type of control to another. 
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APPENDIX 4.1 

', MULTI-TIME SCALE SPT FORMULATION AND CALCULATION 

In this appendix we present the SPT formulation and calculation of'the 

feedback law in more detail than in Subsection 4.2.3,. Throughout this appendix 

we will maintain the same notation as we did in that subsection. In addition, 

let US define Xi as : 

(1.1) Xi = (X1,..‘,“) 

just as we defined 5' in (4.2.79). Likewise, define fi by 

(1.2) fi(x,u) = (fl(x,u),...,fi(x,u)) 

The SPT method seeks to approximate the control system in equations (4.2.1) 

through (4.2.4) by finding an asymptotic expansion to the singularly perturbed 

system 

(1.3) 
dxi 

e-l dt = fi(x,u> 

with the same cost criterion 

(1.4) J(u) = 
/ 

tf 
L(u,x) dt 

t0 

the same initial conditions 

. 

(1.5) xi(tO) = 6’ 

and the same terminal conditions 

. 
(1.6) xi(tf) = w’ 
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In (1.3) the parameters Ei are such that co=1 and for each i we have 

(1.7) Y+l i /E +o 

as Ei*O. In reality, of course, we will be using the approximation for Ei = 1 . 
for all i. The relation (1.7) represents the assumption that the variables x1 

vary on different time scales which become increasingly faster as i increases. 

Although the multi-time scale SPT approximation is conceptually no more 

difficult than the two time scale case, the notational difficulties in the multi- 

time case become extreme. Therefore, we will try to simplify the problem at 

an abstract level as much as possible before working on the control problem. 

Working at the abstract, mOre general level we can avoid some of the notational 

obscurities and maintain a modest level of clarity. 

The essential idea of the SPT approximation is to approximate a trajectory 

z(t) for t0<t5 tf, where z represents all the state components, adjoint com- 

ponents and controls. The 0th order approximation has the general form: 

(1.8) z(t) = [Z(T) - 2(t0)] + Z(t) + [S(S) -Z(t,)] 

where the vectors ? and s represent the multi-time scales, namely, 

(1.9) 7 = (To,T1,. . . Jr) 

(1.10) z = (aO,ol ,..., a& 

where I is defined ~~ 
t-t0 t-tf 

=-and oi is defined ai=-. As for the two time 

scale case, we need only EAnsider the initial bounda;j layer represented by the 

term 2 in (1.8). 
th For multiple time scales, the 0- order approximation of the 

initial boundary layer term has the form 

(1.11) S(T) = 21(Tl) + igf [;j+ltTj+l) -‘j(O)] 

where the terms ;i do not denote different components or combinations of com- . 
ponents of z as we defined x1 and Xi previously. The pi all have the same 

dimension and represent the approximations of z on each of the different time 
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scales pi' 

The expressions ^zi must have the asymptotic property that 

(1.12) .!jJJ ‘itTi) = 2i-1(o) 
1 

for each ill. For this reason, the approximation (1.11) of z(0) is given by 

U-12) z(0) = S,(O) 

Compare this to our discussion in Subsection 4.2.1. The approximation (1.11) is 

analogous to the first term of (4.2.44). Thus, to obtain the SPT approximation 

to z(0) we need to calculate the value of s,(O), the fastest initial boundary 

layer approximation at ~~~ 0. To do this, however, requires first computing 

the slower initial boundary layer approximations. 

The dynamic system for the time scale ~~ is obtained by transforming (1.3) 

to the independent variable pi. Thus, we have 

(1.14) gJ = 2 fj(x,u), Orj<i 
i i 

(1.15) g’ = fi(x,u) 
i 

(1.16) ci dxj 
Ejd.ri = fi(x,u), rrj>i 

The 0% order approximation is obtained by letting cr+O and using the relations 

(1.7). The equations (1.14)-(1.16) then becow 

. 

(1.17) x = 0 
i 
. 

(1.18) $ = fi(x,u) 
i 

(1.19) 0 = fj(x,u), rlj>i 
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These three equations can be summarized in the two equations 
: 

. 

(1620) $ 
i 

= fi(Si_l,Xi,Ui). 

(i.21) O = gi(5i~19Xi,ui) 

The equations (1.20) and (1.21) represent the dynamical equation and equality 
.th constraint, respectively, for the I- level system operating on the time scale . 

T.. The initial conditions for the state x1 in this problem are those given 

b; (1.5). The terminal conditions, however, are determined as a result of the 

solution of the control problem for the (i-l)@ level. These terminal conditions 

are chosen to satisfy the asymptotic relation (1.12). Likewise, the cost cri- 

terion for the i@ level is determined on the (i-l)@ level by the adjoint for 

the (i-1)t-h level. The terminal condition is given in (4.2.92) and the cost 

criterion is given in (4.2.93) of Subsection 4.2.3. 
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APPENDIX 4.2 

THE EXISTENCE OF SOLUTIONS TO THE BOUNDARY LAYER CALCULATION : ; 

IN THE CASE OF COMPLETE TIME SCALE SEPARATION 

In this appendix we consider the SPT algorithm's calculation of the control 

law for a dynamic system for which we have assumed com,plete time scale separati,on'. 

To simplify matters let us'first consider the case of two time scaleswhere'x“ 

and'.y represent the slow and fast variables respectively. We' assume thatkth :. 
are scalar state variables. Let u denote the vector control variable~forIthe 

problem, and let L(x,y,u) denote the integrand of the cost criterion. The dynamic .',. ; 
equations for the system are 

.' 2.. x : 

(2.1) Jg = f(x,y,u) 
. 

, 1,. 

(2.2) 3 = dX,Yd 
1 . 

As discussed in Subsection 4.3.2, the SPT algorithm calculates the control law 

for this system in two stages as follows. Let xf denote the given final value 

for the x state variable. The first stage of the SPT calculation is to solve 

(2.3) min{+#$+ : dX,Y,U) = 0, f(x,y,u) > 01 = -T;,*(x) 

ifx<x f' and to solve 

(2-J) max{+j&+- : g(w,u) = 0, f(x,y,u) < o> = -I;(x) 

optimal control which solve (2.3) and (2.4). 

The second stage of the SPT algorithm is to 

if x>xf. Let j*-(x) denote the optimal pseudocontrol and let U*(x) denote the 

solve 

(2.5) min 

C 

L(X,Y,U) + ~p)foLYdJ) 

g(x,Y,u) : dX,Y~U 

if y<J*(x) and to solve 

1’0 1 = -X$(x,y) 
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(2.6) max C L(x,y,u)+X,*(x)f(x,y,u) 

dX,Y,U) : g(x,y,u) < 0 

> 

= -I$x,y) 
T I I.. 

if y>y*(x). Let u*(x,y) denote the optimal control which solves.(2.5) and (2.6). 

The problem is whether or not we can actually obtain a solution to this 

algorithm, at least in principle. The question arises because it is not at all 

clear that the minimum or the maximum exist in (2.3), (2.4), (2.5), (2.6). In- 

deed, given numerical inaccuracies it is possible that numerical optimization 

algorithms will not converge to a solution unless care is taken in setting UT 
the problem. It is the purpose of this appendix to show that under reasonably 

general circumstances it is possible, at least theoretically, to obtain finite 

solutions to the minimization and maximization problems above and that we can 

obtain at least one solution u*(x,y). Thus, nonconvergence of optimization sub- 

routines within the SPT algorithm must be due to numerical difficulties (which 

can be repaired) and not due to the lack of a solution to the minimization or 

maximization problems within the SPT algorithm. Thus, the SPT algorithm will 

yield a control value for any input state value--at least in theory. This fact 

was reassuring to know when some stages of the algorithm proved to be sensitive 

to numerical error. 

The first step in our argument is to prove a small lemma. Notice that in 

this lemma the optimization problem represents an abstracted and boiled down 

version of one of the stages of the SPT algorithm mentioned above. Thus, to 

find solutions to the SPT algorithm above, we will only have to apply the lemma 

to each stage, one after the other. The reader who is unfamiliar with the mathe- 

matical analysis required in the statement and proof of this lemma may skip to 

the theorem and remarks following the theorem. The analysis required here may 

be found in any introductory book on real ana'lysis such as Rudin (1964). The 

main result of mathematical analysis which we use is the fact that a continuous 

function for a compact set K always achieves a finite minimum f(zl) and a finite 

maximum f(z2) for some z1 and z2 in K. 

Lemma 

Let K denote a compact (closed and bounded) set in R" and let f and L denote 

continuous functions from R" into R. Suppose that for all z in K such that 

f(z)= 0 we have 
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(2.7) L(z) > 0 

Furthermore, suppose that there is a z. in K such that f(zo)>O. 

Then there exists a z* in K such that f(z*)>O and such that for all z in 

i 
K such that f(z)>0 we have 

4 

(2.8) 

That is, z* minimizes L(z)/f(z) for all z in K such that f(z)>O. 

Proof of the Lemma 

The p,roof is rather simple. Essentially we show that (2.7) implies that 

as f(z) approaches 0, the ratio L(z)/f(z) approaches +a., Thus, we can show that 

there is a positive constant 6 such that we can restrict ourselves to z such 

that f(z)> 6 is the minimization of L(z)/f(z). Once this is done, standard 

compactness arguments show that z* exists. 

Let Z denote the set of z in K such that f(z)= 0. Note that Z is compact 

and since L is continuous, L must have a nonzero minimum on Z. That is, there 

is a constant E>O such that 

(2.9) L(z) 2 E 

for all z in Z. Let Zp denote the set of all z in K such that the distance 

d(Z,z) from z to the set Z satisfies d(Z,z) <p. The set Zp is relatively open 

in K, and K-Zp is compact. Since L is continuous and since Z is compact, (2.9) 

implies that for sufficiently small p, we have 

(2.10) L(z) 2 5 

for all z in Zp. 

Let Kg denote the set of points z in K such that f(z)> 6. Note that Kg is 

compact and disjoint from Z. Since Z is also compact, we can choose p small 

I 
enough so that Kg and Zp are also disjoint. 

\ Choose 6 so that G<f(zo) and so that 
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Next choose p so that Zp is disjoint from Kg and so that (2.10) is satisfied for 

z in Z 
P’ 

Then it is clear that for z in Z we have ’ 

(2.12) 
L(zo) LIZ 
W<fz -7-i 

Thus, the minimum of L(z)/f(z) must lie in K-Zo. The function L(z)/f(z) is con- 

tinuous on this compact set K-Zp and hence, standard theorems imply the existence: 

of a z* minimizing L/f. 

Given the lemna above, it is fairly easy to show that under reasonably gen- 

eral conditions, the SPT algorithm generates a well-defined solution. In the 

following theorem we note the general conditions under which a solution can be 

obtained to the SPT algorithm. 

Theorem (Existence of Solutions to the SPT Algorithm) 

Assume the following are true: 

1) For all x there are compact sets, J, and Kx such that ycJXc R1 

and u E K,c R m . 

2) For all x the functions (y,u)+f(x,y,u), (y,u)+g(x,y,u) and 

(y,u) +L(x,y,u) are continuous. 

3) For all x,y,u such that f(x,y,u)= 0 and g(x,y,u)=O we have 

L(x,y,u) > 0, if xt xf. 

4) The optimal pseudocontrol y*(x) solution to the first stage of the 

SPT algorithm is unique for each x. 

Then the SPT algorithm has a solution u*(x,y). 

Remarks 

Before sketching the proof of this theorem let us comment on the above 

assumptions (1) - (4). The first assumption in (1) above merely requires that 

we can restrict y and u to a bounded set in R1 and Rm respectively for any 

given x. The second assumption is obvious. The third assumption (3) is natur- 

ally satisfied for many cost criteria (e.g., the minimum time and quadratic 

criteria, but not the minimum fuel criterion). The first three assumptions 

guarantee a solution to the first stage of the SPT algorithm. The fourth 

assumption is necessary to guarantee a solution to the second stage of the SPT 

algorithm. If there is more than one solution .y*(x), then the fast boundary 
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layer problem in the second stage of the SPT algorithm will have more than one 

possible terminal condition. Such ambiguity wou1.d require an investigation 

going beyond the first order necessary conditions provided by the minimum prin- 

ciple to obtain the actual optimal control u*(x,y) for the fast boundary layer 

problem. 

Proof of Theorem 

The first three assumptions (1) - (3) permit direct application of the .lemma 

to prove the existence of a solution y*(x), G*(x) to the first stage of the SPT 

algorithm, for x#xf. If xtxf and y*J*(x), then the fourth assumption (4) 

implies that for all u such that g(x,y,u)= 0 we have 

(2.13) L(x,Y,u)+X,f(x,Y,u) ' 0 

From (2.13) we can again apply the lemma directly to prove the existence of a 

solution u*(x,y) to the second stage of the SPT algorithm. Note that u*(x,y) 

need not be unique. /// 

For more than two time scales with complete time scale separation, the exis- 

tence results are similar. The essential assumption, besides the obvious con- 

tinuity and compactness assumptions, is the positivity of the original cost 

criterion when the slowest state variable is not at its terminal value (i.e., 

we also assume that the generalization of assumption (3) is true), and in addi- 

tion, the optimal pseudocontrol for the next faster state variable is unique at 

each stage. For example, if there were a state variable z which was faster 

than y, then we would have to assume that the pseudocontrol value for z cal- 

culated at the second stage (y boundary layer problem) was unique. Note again 

that this assumption is necessary even to make sense of the SPT algorithm. 
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(1.15) Tmax = Tmax(M) 

(1.16) L = La(h,E)o: 

(1.17) Vmax = Vmax(h) 

Note that in the energy state formulation the velocity V is simply shorthand for 

the function of E and h given by 

(1.18). V=LZ$TTJ- 

Note also that E is a specific energy measured in units of height. The constraint 

bounds ors and omax are constants in (1.9) and (1.11) respectively. The constraint 

(1.13) is present only to guarantee that the square root in (1.18) is well- 

defined. In a model which includes both E and h as state variables this con- 

straint will not be necessary, since the dynamic equations will never allow the 

height h to exceed the energy E. However, in reduced order models which include 

only E the constraint will be necessary since h will be a free control. 

The control problem is to steer the system (1.3)-(1.8) from an initial 

state (Xi,Yi,Ei,Bi,hi,yi) at to to a final state (xf,yf,Ef,Bf,hf,yf) in minimum 

time tf-to. Thus, the integral cost criterion for this problem is the same as 

(3.2.6)) namely 

(,l l 19) J(a,u,u) = 
/ 

tf 1 dt 

t0 

Since the final time tf is not fixed, the Hamiltonian for this 

identically 0 along an optimal trajectory. Note that the Hami 

by 

problem is 

ltonian is given 

(1.20) H = v(uTmax cosa- D) 
1 + xxv cosfkosy+hyv sin6cosy + XE 

mg 

(L+uT maxsina)sina (L+uT 
+A 

maxsina)coso-mg cosy 

B mV cosy + Ahv siny + 1 
Y mV 

To approximate the optimal control law for this minimum time problem we will 

follow the procedure outlined in Section 4.2 of solving a sequence of smaller 
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dimensional control problems corresponding to different time scales for the : 
' 

problem. 

At this point we will indicate how the time scale separation was chosen.: 

Previous work such as Kelley (1971a,b, 1973c), Kelley and Lefton (1972a) and 

Parsons (1972), which considered three dimensional maneuvers, and.hence con- 

sidered turns, indicated that the basic time scale separation consisted of the 

successively faster. groups‘(x,y), (E,B) and (h,y). Generally, 'B was'considered 

faster than E and y was considered faster than h, although Kelley (I97Sc) noted 

that E might be considered faster than 6 in some situations,. As we have dis-.- 

cussed in Section 4.4, the accuracy of a feedback control calculated with a 

particular time scale separation depends on,the region of state space in which 

the-control is applied. .It seems clear from examples that no one time.scale; 

separation will be accurate for all regions of state space. Indeed, near tfe 

terminal target all time,scale separations are..inaccurate, i.e., the SPT assump- 

tion of any time scale separation is invalid near the terminal target. . 

Although there is as yet no systematic theory to determine the proper time 

scale separation for a given region of state space, we.present the following: 'I 

observations for guidance. The time scale separation for an optimization prob- 

lem seems to depend on two factors: (1) the sensitivity of the immediate cost 

with respect to the current state variables and (2) the sensitivity of the long 

term cost with respect to the current state variables. It appears generally.. 

that the most sensitive states should be considered slower than the least sen- 

sitive states. In addition, it appears that the sensitivity of the long range. 

cost is important when the target 

sitivity of the immediate cost is 

problem). It is important to note 

of cost, immediate and long-range, 

scales. The right choice depends 0 

s near (short term problem) and that the sen- 

mportant when the target is far (long range 

that sensitivity analysis of the two kinds' 

can result in different choices of time .' 

n the proximity of the target. 

The sensitivity of imnediate cost is determined mainly by the relative 

magnitude of the time derivatives , at least in the minimum time optimization 

problem. The most sensitive states (with respect to immediate cost) are the 

ones with the smallest derivatives and hence the slowest in terms of actual 

time variation. 

We carried out a sensitivity analysis for the aircraft model presented in 

Chapter 1 as follows. We first scaled all state variables and derivatives so, . 
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that the state variables and time-to,-go were of order one (the tiximum variation 

of each variable was one). That is, we let X=i , J=i where R,= range-to-go, 

i=+ 
s 

where V,=maximum speed, ?I=: where h, =thse cruise altitude, i=E where 
S 

E,= cruise energy, ?=+ 
S S- 

where t,=minimum time-to,-go, namely RJV,. Since 6 
S 

and y are angles and already vary on the order of one, we left them unscaled. 

Similarly, we scaled lift, drag and thrust in terms of their maximum values. 

With this scaling we obtained the following equations: 

(1.21) 

(L22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

d? 
iE 

= v cosBcosy 

2 = V sin6cosy 
dt 

dE -- 
&dt 

= gEVF,, 

dh 
YE 

= S,i siny 

F sina 
,s= -L 

dt ii siny 

where F,, is the force acting parallel to the plane, namely 

(1.27) F/l = 6TT COSCI- "DD 

in terms of scaled thrust ? and drag D. Similarly, FL is the perpendicular lift 
force 

(1.28) FL = i+ sTi sina 

in terms of the scaled lift L. For the aircraft used, the parameters had the 
approximate values 6E= 1.1854, 6w=.0430, dD=.O313, 6v=.2503, 6T=.O475 and 

&=3.0516/N where N=number of kilometers in the range-to-go. 
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From this scaling in equations (1.21) - (1.26) we clearly see the separation 

of x,y from E,h,y,B for long-range (large N) problems. In addition, note that 

'there.is a milder separation of E,h,y and 6. The order of 5 is 6EdD=.04, the 

order of $ is b,,= .25 and the order of both -Z and dB dy 
dt dt 

is of order 1. On the 

basis of this scaling, there appears to be a time scale separation making x,y 

the slowest variables with E next, h after E and with y,6 together as the fastest. 

However, two important points are in order. First, in our model aircraft the 

angle-of-attack LX was restricted so that ~~20. Thus, in equation (1.25) we can 

only have the dominant term FL nonnegative. Practically speaking, this means 

that the aircraft can accelerate upward much faster than it can accelerate down- 

ward. This fact was supported by simulation runs which showed that it takes 

much more time to decrease y than to increase it. In effect, if y must be de- 

creased, then it varies more slowly than 6. The second point we wish to make 

is that time scale separation is also determined by sensitivity of the long term 

cost-to-go. Thus, it is possible that 6 should be considered slower than its 

ranking in equations (1.21)- (1.26) by virtue of its effect on the long range 

cost-to-go. Unfortunately, we have no method for analyzing the sensitivity of 

the cost-to-go for such a complex optimization problem as the one at hand. 

Therefore, we considered both the conventional orderings (x,y), (E,6), h, y and 

(x,y), E,.B, h, y as well as the ordering (x,y), E, h, y, B indicated by the 

scaling and our discussion given above. For the initial conditions studied we 

found that the latter ordering yielded faster times than the conventional ones 

(mainly due to the asymmetric behavior of y dependent on whether it is increasing 

or decreasing). Note that if fi is considered to be the fastest variable, then 

the SPT algorithm is considerably simplified. One essentially calculates cx and 

u for vertical plane flight and adjusts o continuously to head to the target 

(or the predicted position of the target). The other orderings are considered 

in Section 5.4 (E faster than f3, f3 faster than h or y) and Section 5.5 (E,f3 

together faster than h or y). 

In the following sections we will first work through the analysis required 

for the solution of each of the control subproblems, and then we will summarize 

the resulting algorithms and note the computation required for their on-board 

execution. As we noted in Section 4.2, the SPT approximation involves solving 

a hierarchy of control problems which must be solved in sequence (see Figure 
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4.2.2). Thus, the total time required to calculate one update of the aircraft 

controls by means of the SPT method is the sum of the computation times required 

for each of the a,lgorithms which solve the individual subproblems. In addition 

to noting the computation time required for the individual subproblem algorithms, 

we will also note which functions must be stored and which quantities could be 

obtained directly from aircraft sensors. 

The organization of this chapter roughly follows the separation of time 

scales we have assumed for the aircraft model. Thus, Section 5.2 discusses,the 

x,y reduced order problem, Section 5.3 discusses the E boundary layer problem, 

and Section 5.4 discusses the 6 boundary layer problem. Due to the difficulty 

of computing the 8 boundary layer solution we discuss the use of a suboptimal 

solution in Section 5.5. Then in Section 5.6 we discuss the h boundary layer 

problem and finally, in Section 5.7 we discuss the y boundary laye-r problem which 

operates on the fastest time scale. 

In each section we have discussed the computational requirements as well 

as the analysis required for the solution. In addition, in Sections 5.2 and 

5.3 we have discussed the possibility of linearization to solve the faster 

boundary layer problems corresponding to the subproblems of those respective 

sections. Thus, in Section 5.2 we consider the possibility of linearizing around 

the x,y reduced order solution as a nominal value to obtain linear cotrols for 

the E,B,h,y boundary layer problem. Likewise, in Section 5.3 we consider lin- 

earizing around our suboptimal solution for E to obtain linear controls for the 

corresponding faster boundary layer 6, h and y. 

Figure 5.1.1 shows the complete control logic for.long range interception. 

It involves an iterative calculation of the intercept point and the intercept 

time, tf. In addition, the calculation of heading on the cruise arc and controls 

for the three parts of the trajectory (before cruise, cruise and after cruise) 

is also performed. 

5.2 The Reduced Order Problem in x,y: The Cruise Solution 

5.2.1 x,y Reduced Order Control Problem and Feedback Solution 

By considering x and y on the same time scale and all the other states in 

(1.3) - (1.8) o n a faster time scale we obtain the reduced order dynamical system 
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Compute t 
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Compute minimum time 
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climb to cruise 

Computation of 
controls for 
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Implement control and 

Figure 5.1.1 

Overall Control Logic for Long Range Interception 
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(2.1) ( 
I 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

dx . . . 
dt = v cosl3cosy -. : 

d 
# 

.'. - 
t.= V sinBcosy 

V( uTmx cosa- D} : 
0= 

w 

0= 
(L+uTmaxsina)sinu 

mV cosy 

0= V siny 

o (L+uTmaxsina)cosa-mg cosy 
= 

mV 

together with the constraints (1.9) - (1.13). The Hamiltonian for this problem 

is 

(2.7) H = l+X,V cOsf3cosy+ XyV sinDcosy 

and since the problem is to minimize time, the Hamiltonian is identically 0 along 

the optimal trajectory. The pseudocontrols,E,h,D,y and the controls a,u,u are 

chosen to maximize the velocity V subject to the equality and inequality con- 
straints and satisfy the x,y terminal conditions. Thus, one easily finds that 

the optimal pseudocontrols for the reduced order problem are given by: 

(2.8) 

(2.9) 

(2-w) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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E" = E 
C 

B * = tan 
-1 Yj-Yi 

- 
Xf-xi 

h* = h 
C 

Y *=o 

a* = ac 

cJ* =0 

u* = u 
C 



where the subscript "c" denotes constant cruise values. Let Vc denote. the cor- 
responding maximum cruise velocity determined from Ec and hc by (1.18). For' 
our particular aircraft, which is taken from Parsons (1972), these constants . 
are given by 

(2.15) EC = 2.9949xlOf m ' 

(2.16)' hc = 1.2192 x lo4 m 

(2.17) ac = 1.509" 

(2.18) uc = .8928 

(2.19) V, = 590.2 ms" 

In order to define the cost criterion for the E boundary layer we need to 
obtain the adjoints A, and hy for this reduced order problem. This is 'easy to 
do and we find that they are given by the expressions 

(2.20) 
cwc 

A, = - 7 
C 

(2.21) 
sin@, 

xy = - 7 
C 

where we have introduced the notation B, for the angle given by (2.9) or by 

(2.22) cosBc = 
Xf- Xi 

((xf-xi)2+(Yf-Yi)2)4 

(2.23) sir@, = 
Yf - Yi 

24 (txfaxi12+ (Yf'Yi) 1 

Note that (2.22) and (2.23) uniquely define 8, as the heading angle between the 
initial point (xi,yi) and the final point (xf,yf), measured from the positive 
x direction to the line between these points. Note that we can rewrite the- 
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control law for B* in (2.9) as 

(2.24) f3* = B, 

For convenience we will use the simpler expression (2.24) in the future rather 

-than the expression (2.9). However, it should be kept in mind that 6, is a 

function of the current x and y states as expressed in (2.9) or in (2.22), (2.23) 

The cost criterion for the next level of the SPT hierarchy of control sub- 

problems is found by substituting the expressions for the adjoints, Xx and Xy 

from (2.20), (2.21) into (2.7) to obtain 

(2.25) t = l-+ cosycos(8-8,) 
C 

5.2.2 Computational Requirement for the Solution 

Clearly, the computations required in this reduced 

All the controls and pseudocontrols are constants which 

order problem are trivial. 

are precomputed and 

stored, except for the pseudocontrol B*= B,, which is easily computed using one 

of the inverse trigonometric functions from (2.9), (2.22) or (2.23). Figure 

5.2.1 summarizes the computational requirements at this level. '. 

Storage 

EC 
(constant) 

hC 
(constant) 

aC 
(constant) 

U 
c ( 

constant) 

Calculation I 

% 

(by means of : : 

equation (2.9) 

or (2.22) or 

(2.23)) : 

Figure 5.2.1 

Computational Requirements of x,y Reduced Order Problem 

, Note that these are the minimum on-board calculations that must be made and the 

minimum storage required for the x,y reduced order problem. At faster levels 

we will assume that EC, h,, ac, uc have already been stored and that B, has 

already been calculated, and we will not count this storage or calculation in 
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the computational requirement for the faster level solution. In this way, the 

total on-board computational requirement for the problem will be obtained by 

adding together the requirements at each level without the risk of counting .. ' 

storage or calculations more than once. 
_1 > 

: 
5.2.3 ,Linearization Around the x,y Reduced Order Solution -3 

-__=.__ 
In Subsection 5.3.4'we discussed the possibility of linear,izing'the boundary 

layer problem around the reduced order solution. In this case we would obtain 

a linear, quadratic criterion, time invariant, infinite time problem in the per:" 

turbations of E, B, h, y, u, 0 and a from their optimal values computed in the. ,".' 

x,y reduced order solution. The linear control problem has a simple control law 

of the form 

(2.26) 
(r)l.(r:) G (i;?) 

where G is a constant 3x4 gain matrix computed off-line. ..; ,~ 

:, I.‘.! 

The equation (2.26) gives us the linear regulator control to maintain the . . 

cruise conditions of the aircraft. Thus, on the cruise portion of the trajectory 

the full control law for the aircraft is particularly simple. Figure 5.2.2 

summarizes the on-board computational requirements in this case. 

Storage Calcu!ation 

G 

(a3x4 
array of 
constants) 

u, 0, a 

(by means of 
equation (2.26)) 

)\ Figure 5.2.2 

On-Board Computational Requirements During Cruise 
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I,~.~~. . ..- , ,.,. -.-...-. . .- 

5.3 The Initial Boundary Layer Problem in E 

5.3.1 E-Boundary Layer Problem and .Feedbac.k Solution 

By considering E on a faster time scale than x or y and on a slower time 

scale than B, h or y, we obtain the following boundary layer dynamical system 

for E: 

dE _ V(uTmaxcos~- D> 
(3.1) dt - mg 

(L+uT sina)sino 
(3.2) 0= max 

mV cosy 

(3.3) 0 = V siny 

(3.4) 0= 
(L+uT,,,sina)coso-mg cosy 

mV 

together with the constraints (1.9)- (1.13). The cost criterion for this problem 

is found from (2.25) to be 

(3.5 b-8,)1 dT 

The initial condition is given by E =Ei but the final conditjon is given by 

E= EC and not by E= Ef. In particular, we see that the resulting'SPT control 

law will fly the plane to the cruise condition but will not yield a control 

which will give some final energy other than the cruise energy. We have dis- 

cussed this problem more generally in Subsection 4.4.2. We discuss a possible 

solution for this particular aircraft problem in Section 5.5 of this chapter. 

Since the control problem for this boundary layer has only one state dimen- 

sion, we may use the technique of Subsection 4.3.2 to solve for the feedback 

control law by minimizing or maximizing the expression 

mg(l-+ cosYcos(B-Bc)) 

(3.6) 
C 

V(uTmaXcos~- D) 

with respect to the pseudocontrols B,h,y and the controls u,o,a such that the 
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inequality constraints of (1.9)- (1.13) and the equality constraints of (3.2)- 

(3.4) are maintained. In addition, if we are minimizing (3.6), then we must 

restrict ourselves to pseudocontrol and control values such that g given by 

(3.1) is positive, and if we are maximizing (3.6), then we must restrict our- 

selves such that g is negative. 

From the equality constraints it is not hard to deduce that 

(3.7) y = 0 

(3.8) cs = 0 

Thus, the pseudocontrol y and the control o are unchanged from their values given 

by the x,y reduced order solution. Moreover, it is not hard to see that the 

optimization problem gives 

(3.9) B = 6, 

so that the pseudocontrol B also has its reduced order value. Substituting (3.7), 

(3.8) and (3.9) into the original E-boundary layer problem, we obtain the fol- 

lowing optimization problem. We must maximize or minimize the function 

mg(l-+ ) 
(3.10) c 

V(uTmaxcos~- D) 

subject to the equality constraint 

(3.11) 0 = L'+uTmaxsin~-mg 

together with the inequality constraints (1.9), (l.lO), (l.ll), (1.12). Using 

the equality constraint (3.11) to solve for u and substituting this expression 

back into (3.10) we obtain the expression 

(3.12) 
n-cdl-+ 1 

C 

V([mg- Llcotcl- 0) 

which we must maximize or minimize, according to the convention described above 
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after (3.6). By eliminating u we also obtain a new inequality tonstraint on V 

and OL corresponding to the original constraint on u in (1.12)., The new constraint 

is 
-' __I . 

We have now reduced the optimization problem to a problem involving only 

two variables, V and ~1. Let us now consider V fixed and examine the dependence 

of (3.12) on CX. Using (1.14)- (1.16) we can write the cx dependence explicitly 

in (3.12) as 

ms(l-i 1 
(3.14) 

C 

V([mg- Lcla]cotcl- Do- Lam2) 

Similarly, the inequality constraint (3.13) becomes 

(3.15) 0 I T"- >;o I 1 
max 

It is not hard to see that for cx in the range O<a<n the denominator of (3.14), 

namely 

(3.16) V([mg- Loa)cotol- DO-L,na2) 

is a strictly decreasing function of ~1. Thus, the expression (3.14) is an in- 

creasing function of c1 in this range. Note that this range easily includes all 

admissible c1 since CX~<IT (in our aircraft example as= 12"). 

Since (3.14) is monotonically increasing in (x, in order to maximize (3.14) 

with respect to ~1 we must choose the largest possible CI consistent with the in- 

equality constraints (3.15) and (1.9). Similarly, if we wish to minimize (3.14), 

w must choose the smallest possible a consistent with the inequality constraints. 

Note that the function 

‘> 
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(3.17) 
mg- Lao 

da) = T maxsina 

which appears in the inequality constraint (3.15) is monotonically decreasi,ng in 

a for admissible ~1 (in fact, for all a such that O<a<F). The monotonic beha- 

vior of the function (3.17) allows us.to describe the maximum and minimum allow- 
able values of a fairly easily. There are essentially three different cases to 

consider. ,. .. 

Case 1. This case corresponds to 

(3.18) Laas+T max sina, < mg 

In this case there is no admissible a which satisfies the inequality constraints 

(3.15) andv(1.9). Physically, (3.18) represents the stall constraint for the 

plane and it defines the region in which the plane cannot maintain vertical equi- 
librium using both lift and thrust forces. 

Case 2. This case corresponds to the two relations 

(3.19) Lass < cl 

and 

(3.20) Tmaxsinas+ Laas 2 mg 

Physically, there is less lift force than the weight of the aircraft, but by 

using maximum thrust in addition to lift, the plane is able to maintain equili- 
brium. The maximum admissible a is given by a=as. The minimum admissible a is 

given by solving the equation 

(3.21) Tmaxsina+ Las = mg 

Case 3. This case corresponds to 

(3.22) Lass 2 mg 

Physically, the aircraft has enough lift to maintain vertical equilibri.um by 
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lift force alone. The maximum admissible a is, given by 

(3.23) a=fi! _'. 

a 

and the minimum admissible a is, given by solving (3.21) as above. 

The argument above concerni.ng a allows us to express a as a function of V 

and E, and hence allows us to eliminate a from the problem to optimize (3.14).'? 

Since the aerodynamic quantities L , DD and Tmax 

solve the V optimization numerically. 

are given only as data, w must 

We have done this off-line and stored the 

resulting optimal control laws V*(E). Note that there are two V* controls, one 

corresponding to the maximization and one corresponding to the minimization of 

(3.14). We have found that for the optimal V= V*(E), only Case 3 above occurs. 

Thus, the throttle control u is 0 or 1 depending on whether E is above or below 

the cruise energy EC. The angle-of-attack a is chosen to maintain vertical equi- 

librium, i.e., to satisfy equation (3.23) if u=O and t.o satisfy (3.21) if u=l. 

In Figure 5.3.1 we have summarized the SPT feedback control law for the E-boun- 

dary layer. 

To obtain the cost criterion for the next level control problem, we need 

to obtain the optimal adjoint A$ for the E boundary layer-problem. This is 

easily accomplished by solving 

(3.24) V* 0 = l-T+Atmg v* (T*cosa*- D*) 

Note that (3.24) gives AZ as a function of V*, which in turn is a function of E, 

namely 

mg(F- 1) 

(3.25) At = C 

V*(T*cosa*- D*) 

We may either store hi explicitly as a function of E or we may compute. At from 

V*(Ej using (3.25). However, the latter approach requires us to store the aero- 

dynamic functions T*, D*. 
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Figure 5.3.1 .-E-Boundary Layer Algorithm. 
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5.3.2 Computational Requirements for the Solution 

The important new quantities computed in the E level control problem are 

the pseudocontrols V*(E) and h*(E), the controls a*(E) and u*(E), and the adjoint 

+E). We have stored V* (for both E<Ec and E>E,) as a function of E. From 

V*(E) we can easily compute h*(E) as 

(3.26) h*(E) = E _ !!?&! 

The control function u*(E) is a trivial switch function as can be seen from 

Figure 5.3.1. For E>Ec, we have u*(E)= 0 and for E< EC we have u*(E)= 1. 

The control a*(E) is obtained from solving (3.21) if E< EC and from solving 

(3.23) if E> EC. Equation (3.21) gives a only implicitly so that we must approxi- 

mate the exact solution. For La>> mg, the linear approximation sina-a gives an 

explicit formula, 

(3.27) a*(E) = ,- "9+ L 
max a 

for a*(E). Using Newton-Raphson's method with (3.27) as an initial guess, we 

can obtain a better approximation of a*(E) with only a few iterations. 

On-board computation of a*(E) from either (3.21) or (3.23) will require 

storing the aerodynamic functi‘ons Tmax(E,h) and Lo(E,h). The function La has the 

form 

(3.28) La = QCL (M)p(h)V2S 
a 

where S is a constant, M is Mach number related to velocity by the equation 

(3.29) M=F&-) 

where c(h) denotes the speed of sound at altitude h. Thus, to store La(E,h) it 

suffices to store functions of only one variable and then compute La from these 

using (3.28). 

The function Tmax, on the other hand, is only given as data and is not 

given in terms of functions of a single variable. Thus, we must store Tmax in 
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an efficient form. At present Tmax has been approximated using bicubic splines, 

but the approximation is costly in terms of storage and this method of storing 

T max should be improved. 

Figure 5.3.2 summarizes the computational requirements at the E-boundary 

layer level. 

Storage 

V*(E) (function of 
one variable) 

(piecewise linear 
approximation over 
five intervals in E) 

LJE,h) (function of 
two variables)? 

Tmax(E,h) (function of 
two variables) 

Computation 

(froi*(3.21) 
or (3.23)) 

(fromh*(3.26)) 

Figure 5,3.2.-Computation and Storage Requirements for E-Layer Solution. 

5.3.3 Linearization Around the E-Boundary Layer So.lution ---- 
As in Subsections 4.3.4 and 5.2.3, we can also linearize the boundary layer 

control problem for f3, h and y around the nominal values for these variables 

obtained in the E-boundary layer problem solution. As before, we obtain a linear, 

quadratic cost criterion, time invariant, infinite time problem in the pertur- 

bations of the variables B, h, y, CT, a from their optimal values computed in the 

E-boundary layer problem. Note that we assume that u retains the same value, 

either 0 or 1, in the higher level control problems that it has in the E level 

problem. The linear control problem has a simple control law of the form 

where G is a 2x3 gain matrix which depends only on E. In this case the gain 

matrix G is a function of the energy E and must be computed off-line and stored 

iAlternatively, store the functions CL 
(3.28). 

,p,c of one variable and compute La from 
a 



efficiently for on-board use. Note that storage of G amounts to the storage of 

six functions of one variable. Figure 5.3.3 summarizes the computational re- 

quirements for this linearization. 

Storage Calculation 

G u,a 

(a 2x3 array (by means of 
of functions equation (3.30)) 
of one variable) 

Figure 5.3.3.-Computation and Storage Requirements for Linearized 
E-Layer Solution. 

5.4 The Initial Boundary Layer Problem in B - 
5.4.1 B-Boundary Layer Problem and Feedback Solution 

By considering B on a faster time scale than x, y or E and on a slower time 

scale than h or y, we obtain the following boundary layer dynamical system for B: 

(4.1) g= 
(L+ uTmaxsina)sina 

mV cosy 

(4.2) 0 = V siny 

(4.3) 
(L + uTmax sina)cosa- mg cosy 

0= 
mV 

together with the constraints (1.9)- (1.13). The cost criterion for this problem 

is found to be 

(4.4) J = ,1[1-$ 
/ C 

cosycos(B-B&+X; & (uTmaXcosa- D)] dr 

where XE is the optimal adjoint computed in (3.25). The initial condition is 

given by B= Bi but the final condition is B= B,. Again, as for the E-boundary 

layer problem, we see that the SPT control law will fly the plane to the cruise 

heading but will not yield a control which will give the final heading angle. 

The optimal control law is obtained by minimizing or maximizing the expres- 

sion 
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[l-i c0syc0s(B+,)+x* J!- 

(4.5) ‘. c 
E mg (UTmax cosa - D)]mV cosy 

(L+uT max sina)sino 

with respect to the pseudocontrols h, y and the controls u, a, a such that the 

inequality constraints,of (1.9) - (1.13) and the equality constraints (4.2) and 

(4.3) are satisfied. If B<B, then we minimize (4.5) and we must restrict our- 

selves to pseudocontrol and control values which give a positive value for g 

in (4.1). Likewi,se, if f3> 6, then we maximize (4.5) and we must restrict our- 

selves to pseudocontrols and controls such that g remains negative. 

From the equality constraint (4.2) it is not hard to see that 

(4.6) y = 0 

At this stage we will make the additional assumption that u takes on the same 

value (namely 1 or 0) that it does in the E-boundary layer solution. In general, 

we assume that if a control variable takes only a maximum or minimum value at a 

slower level of the SPT hierarchy, then it maintains that value of the control 

at the faster levels of the hierarchy. Thus, instead of writing UT,,, we will 

write T and assume that u is already determined and fixed by the E-boundary 

layer solution.* 

With these assumptions the expression (4.3) becomes 

(4.7) 0 = (L+T sina)coso-mg 

Using (4.7) to simplify the denominator of (4.5), we obtain 

[I-+ ~0s(f3-8,)+ At $ (T cosa- D)]V 

(4.8) 
C 

g tana 

Let us fix V and try to determine the optimum a and o for a given fixed V. To 

do this we consider CI a function of a determined by the expression (4.7). Taking 

*A comparison with.the exact energy state solution using both E and f3 as states 
on the same time scale shows that this approximation is valid in all cases 
except those where level flight cannot be maintained during a turn with zero 
thrust (see Figure A5.1.9). This special case is handled quite easily in 
practice by switching to full thrust if level flight cannot be maintained other- 
wise. 
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the derivative of (4.8) 

(T sina+ 

with respect to a, we obtain 

PnL,a) $ cota, 

COS(~+~,)+ A* VT cosp- DO-nLaa2]) 
E mg 

The derivative E is determined from (4.7) to be 

(4.10) g = 
Lo+T cosa 

cotu 
Laa+T sina 

If we assume that a is small and that we can neglect terms higher than linear 

terms'in a, ,then we can determine the optimum o by setting the expression (4.9) :. 

equal to 0. In this way, we, obtain 

I-+ coS(8-B,)+Xt & (T-DO) 

(4.11) tan20 = C 

(T+ 2nL ) 
4p 

(T+ La) 
F w 

In (4.11) one takes the positive or negative root depending on whether 8~ 8, or 

B> Bc. The corresponding value for a is determined from (4.7) using the value 

for 0 from (4.11). Note that we must also test the possibility that CT or a lie 

on a constraint. One does this simply by setting a:"omax and solving (4.7) for 

the corresponding a or by setting a=as and solving (4.7) for o.' We then test 

these values against the value of u determined by (4.11) and keep the one which 

gives the smallest (if B<Q) or greatest (if @> 8,) value of (4.8). 

So far we have only determined the optimum o and a values in terms of a 

fixed V. To obtain the optimum V, ,and thus solve the problem, we must resort to 

numerical optimization off-li.ne, This optimization is made difficult by the 

dependence of (4.8) on E and B-8,. Thus, the computed optimal velocity pseudo- 

control; V* for the B-boundary layer is,a function of the following form 

(4.12) V* = V*(E,B-DC) 
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Note that V*(E,B-B,) = V*(E,-(B-B,)). 

The control law for the B-boundary layer is sumnarized in Figure 5.4.1. 

5.4.2 Computational Requirement for the Solution 

The major computational requirement at this level is the storage of 

V*(E, iW,) . Having stored V*, we can compute CT* from.(4.11) or from the con- 

straint values and then compute CX* from the expression 

(4.13) a* = ~g+c~su* 
a max 

We will also have to compute h* corresponding to V*(E,B-B,) from (3.26), and we 

need X?(E) to obtain o* from (4.11). If Xt is not stored, then it must be com- 

puted in the E-boundary layer by means of equation (3.25). Note that in (3.25) 

the expression V* is V*(E), the optimum V for the E boundary layer problem, and 

not V*(E,B-B,). The computational requirements at the B-boundary layer level 

are summarized in Figure 5.4.2. 

Storage Calculation 

V*(E,B-B,) (function of 
two variables) 

Do (function of two 
variables)? 

n (function of one 
variable) 

A* 

(fromE(3.25)) 

(froi*(4.11)) 

(froi*(4.13)) 

Figure 5.4.2 

On-Line Computational Requirements for the B-Boundary Layer 

In the next section we take an alternative, simpler approach to the B- 

boundary layer solution discussed here. We use the work of Parsons (1972) to 

obtain an exact solution to the reduced order problem in x,y,E,B. Then we ap- 

proximate this exact solution with a suboptimal solution that essentially divides 

the E-6 plane into regions where zero or maximum thrust is used and all the 

tAlternatively, store functions CD ,p,c of one variable and compute Do. 
0 
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’ I .’ , 

V 

Compute X*(E) 
from ('3.25) 

V 

Call V*(E,6-8,) 

V V 
f 

Calculate a>0 Calculate a<0 
from (4.11) or from (4.11) or 

from constraints from constraints 
on oand a on aand a 

' 

r-4 Calculate a 
from (4.7) ' 

Figure 5.4.1.-@-Boundary Layer Algorithm. 
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,’ 

turning takes place either on the maximum turn rate (MTR) locus or on the maxi- 
mum velocity constraint boundary. This approach involves more storage, but less 
on-line computation. . 

Linearization around the B-boundary layer solution for h and.y can be per- 
formed in the same way as the linearizat?pn around the E-boundary layer (see 
Subsection 5.3.3). 

5.5 E,B Boundary Layer Problem 
5.5.1 Exact E,B Solution_ 

Due to the difficulties of computing the B boundary layer feedback control 
described in Section 5.4, we now suggest an alternative approach. The work of 
Parsons (1972) provides us with an exact solution to the x,y,E,B problem in 
which x, y, E and B are treated on the same time scale. Using this exact solu- 
tion as a basis, we develop a suboptimal feedback law which can be computed on- 
line and which is not far from optimal. 

Assuming that h and y vary faster than x, y, E, B (which vary on the same 
time scale), we obtain from (1.3)-(1.8) the dynamic equations 

(5.1) g= v cosfkosy 

(5.2) 8 dt = V sinBcosy 

v(uTmax cosa- D) 
(5.3) g = mg 

dB (L+uT,,,sina)sino 
(5.4) dt = mV cosy 

with the equality constraints 

(5.5) 0 = V siny :. 

(5.61, 0 = 
(L+uT,,sina)coso-mg cosy. 

mV 

from (5.5).we have y.= 0 and from (5.6).,&i obtain 
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(5;7) mg seco = L+uT,,,sina 

Substituting this expression in (5.4), we have 

(5.8) 
dB i g tana 
aT v 

Using the fact that-a is small and La is much. greater than Tmax, we can find 

an approximate expression for a from (5.7), namely 

Substituting this into (5.3) and approximating uTmaxcosa by uTmax, we obtain 

(5.10) g = 
V(uT,,,- Do- DLsec20) 

w 

where DL is given by 

(5.11) DL = + 
a 

Thus, the system (5.1)- (5.4) becomes 

(5.12) !g= v COSB 

(5.13) 8 = V sinB 

(5.14) $ = 
V(uTmax - Do- DLsec20) 

w 

(5.15) dt = dB F 

There are inequality constraints on CT, directly through (1.11) and indirectly 

through (1.9) and (5.9). 

This optimal control problem (minimum time) must be solved numerically in 

terms of a TPBVP derived from the first order necessary conditions. In Appen- 

dix 5.1 we set up the TPBVP and discuss the optimization procedure. In the next 
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section we describe the suboptimal approximation we.have chosen' for'this solu- 

tion. . '. 

5.5.2 ApproximatiE Subm+Kl-Real-Time 

This subsection deals with the problem of computing in real time a subop- 

timal minimum-time trajectory to intercept a moving object, by approximating :, 'I 
the work of Appendix 5.1. These sections have shown that optimization on-line .: ;. 
is too time-consuming even for the energy-state approximation and therefore not 

feasible in real time. A sacrifice in accuracy is called for so that a near- 

optimal solution may be generated on-line merely by looking up stored trajectories 

and fitting together portions of them to match the particular boundary conditions 

imposed upon the aircraft states. The program RLTIME has 

such a near-optimal trajectory. Boundary layers can then 

solution in order to smooth out the sudden changes in the 

introduced by the energy-state approximation. 

Stored Trajectories-. Four trajectories are stored: 

been written to produce 

be added to this 

states of the aircraft 

., . . 

(1) Max-turn locus with 90225 E< 29870 m. This locus has been defined in ._--- 
Appendix 5.1 --basically it requires CT=~~=G~, a=12" and thrust is maintained 

either at T= Tmax or at T= 0. The upper limit on E was chosen arbitrarily while 

the lower limit is approximately the Lufbery Circle Point value (Parsons (1972.)). 

This is the classical aerial combat situation and is a steady-state turning 

rate condition. If the airplane were to fly along this locus its energy would 

decrease while following a spiral-shaped trajectory in three-dimension space. 

The following equations were integrated to obtain the locus with T=T,,,:, '1 

(5.16) g = 
tanomgW 

ViT(Tmax- Do- DLsec20m) 

(5.17) $ = V 

VMT(Tmax- Do-DLsec20m) 

(5.18) g = w COSB 

(Tmax - Do- DLsec20m) 



W sin$ 

(T,,, - Do- DLsec20m) 

Equations (5.16) - (5.19) have been derived from the equations of motion of the 

airplane model (5.12) - (5.15). Note that for 9022s Er 29870 m, Tmax< DRAG and 

so for o=+om, B increases as energy decreases. VMT is the velocity necessary 

to remain on the locus and is given by the equation: 
, 

> 2 

(5.20) VMT = 

which,merely states that LIFT= W sect at maximum bank angle and angle-of-attack, 

i.e., setting os = om. 

In order that the x and y values obtained by integration of equations (5.18) 

and (5.19) may be translated into the inertial coordinate system, consider the 

following: 

@ = f(E) from (5 16) hence dE - , 

(5.21) 8(E1) - B(Eo) = Bm(E1) - BmtEO) = 
I 

E1 
f(E) dE 

EO 

where the subscript MT refers to the max-turn locus coordinate system and the 

unsubscripted variables refer to the inertial coordinate system. (See Figure 

5.5.1.) Equation (5.18) may now be rewritten as: 

(5.22) $ = - 
W cosCBMT(E) + (B(Eo) - B~(EO))I 

(T - D) 

(5.23) = cos(B(Eo) - BmT(EO)) 
[-w y&f)] 

- sin(B(Eo) - BMT(E0)) 
[-W s:"s""'] 

Hence, 
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max-turn locus .. 
(29600s Er 98000 ft) 

Y 
max-turn locus coordinate system 

Note 

B(E) - dEo) = B&)-B&~) 

h 

aircraft trajectory 

& 

aircraft coordinate system 

Figure 5.5.1 .-Max-Turn Locus Coordinate System/Aircraft Coordinate System. 
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(5.24) x(E) - x(Eg) = COS(B(EO)-BMT(EO))[xMT(E)-xMT(EG)] 

+ sin(B(Eo)-BMT(Eg))[~~T(E)-~FIT(EO)I 

and similarly: 

(5.25) Y(E) - Y(Q) = COs(B(Eo) - BMT(Eo))CYMT(E) -YMT(Eo)I 

+ sin(B(Eo) -BMT(EO))CxMT(E) -XMT 0 (E 11 

(2) Max-turn locus with 89925 Es 1524 m. Here the lower limit is arbitrary 

while the upper limit is again approximately the Lufbery Circle Point val.ue. 

To obtain the turning in the same sense as in (1) with o+ve, it is necessary 

to move up the locus with increasing energy since now Tmax> DRAG. Equations 

(5.16)- (5.19) were integrated and again equations (5.24) and (5.25) give the 

horizontal plane distances in the inertial frame. 

(3) The Af3= 0, minimum-time energy path to the cruise arc. This is a 

trajectory belonging to the family of trajectories presented as initial turns 

to the cruise arc in Appendix 5.1. This particular one allows no turning and is 

really just the vertical plane solution of the probl-em of reaching the cruise 

3rc in minimum time. 

(4) The AB= 0 chatter path off the cruise arc. Appendix 5.1 presents the 

theory supporting this trajectory, which requires zero thrust and is a maximum 

deceleration arc. 

Real-Time Approximations. As stated earlier, a real-time solution requires 

minimum computation on-line and should involve mainly looking up of stored tra- 

jectories and fitting together portions of them so as to satisfy boundary con- 

ditions. One possible approximation for real-time determination of trajectories 

is to turn only on the max-turn locus and at other times to follow either the 

' delta-beta=0 path to the cruise arc or the chatter path off the cruise arc. 

Hence, for initial turns to the cruise arc, the approximate solution requires 

a zoom to the max-turn locus from the initial conditions followed by turning 

on the locus and then a zoom to the delta-beta=0 path to the cruise arc. 

As presented in Appendix 5.1, Figure A5.1.9 shows the optimal trajectories 

in the beta-energy plane for final turns from the cruise arc. It is possible 
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to make approximations in varying degrees to produce near-optimal trajectories 

to replace the optimal ones, in real time. Using the same approximation as for 

the initial turns, all the final turni,ng is also on the locus. Thus the real- 

time approximation requires bank angle chatter on getting off the cruise arc 

followed by a zoom to the max-turn locus. After turning on the locus a zoom at 

constant energy to the final conditions completes the trajectory. This approxi- 

mation is indicated by the dotted lines in Figure 5.5.2 where the thrust-switch 

locus is also ignored: T=T,,, all the way once chatter is over. 

Numerical results have been obtained for the approximation described above. 

Probably, a better approximation would be as in Figure 5.5.3 where a piecewise 

linear fit is made for the thrust-switch locus and the zoom-climb locus and the 

trajectory allows turning before reaching the max-turn locus by about 60". The 

rate of turning may be approximated as constant by the almost straight line tra- 

jectories, or alternatively a crude g integration may be performed on-line. 

Switching the thrust would require storage of the max-turn locus with thrust= 0. 

Formulation of the Problem. We assume for simplicity that the target is 

moving in a straight line at constant velocity. For interception of the target, 

we require pursuer trajectory time (tl)=target time to interception point (tf). 

In addition tl =tf must be the minimum possible time. Hence an iterative loop 

is necessary to match up tl and tf for minimum-time interception. With a value 

for tf, the position of the target in three-dimensional space may be obtained 

and the problem may be restated as: given initial and final energies, altitude, 

velocity, and horizontal plane positions, a minimum-time trajectory is required 

so that the above boundary conditions are met. 

Figure 5.5.4 shows how the min-time path is split up among the stored tra- 

jectories and the cruise arc. The heading angle, 6, is measured clockwise from 

the x-axis. Two constraints have to be observed. Restricting ourselves for 

simplicity to the case of clockwise turns, (1) the relative angle between the 

initial and final points (6,) is assumed greater than Bo, the initial heading 

angle; (2) the total turning angle is assumed less than 180" 

In general terms the algorithm is: 

(1) Estimate tf, the interception time 

(2) compute final conditions for interceptor aircraft 

(3) from initial altitude, execute a velocity (or altitude) zoom (constant 

147 



-,-•e Suboptimal approximation (all turning on max-turn locus) 

z 
14c 

0 d 12c 
W 
1: too 

z 
- 60 

ti 
2 60 

5 4c 

2 2c 

FINAL ENERGY HE,IGHT, Et (x lo3 m) 

Figure 5.5.2 Change in Heading for Variable-Altitude 
Final Turns from Cruise Arc 



-me I- Suboptimal approximation (linear fit for thrust switch and zoom climb loci) 

5.0 10.0 15.0 20.0 zs. u I 30.0 

FINAL ENERGY HEIGHT, Ef (x lo3 m) 
% 

Figure 5.5.3 Change in Heading for Variable-Altitude 
Final Turns from Cruise Arc 



A~=O chatter 

cruise\ 

Figure 5.5.4.-Geometry for Determining Initial Heading Angle and 
Interception Time tf. 
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(4) 
(5) 
05) 

(7) 
03) 

(9) 
(10) 
(11) 
(12) 

(13) 
(14) 

energy) to the max-turn locus 

determine cruise heading f3, (see equation (5.28) below) 

turn along the max-turn locus until heading= 6, 

zoom to the AB = 0, min-time E-path to cruise arc 

follow AB= 0, min-time E-path to cruise arc 

stay on the cruise arc for distance R, 

follow AB=O chatter path off the cruise arc for distance R2 

zoom dive or climb to max-turn locus 

follow max-turn locus until heading angle= Bf 

zoom dive or climb to required final altitude and velocity 

compute trajectory time and update tf using Newton-type step 

go to (2) if accuracy on tf not met. 

igure 5.5.8 introduces relationsh 

(5.26) Yl + Y2 + (R1+ R2+ R,)sinB, = 

(5.27) x1 + x2 + (R1+R2+ Rc)cosBc = 

wnich give the cruise heading as: 

(5.28) tar@, = 
Yf - Yo .- Y1- Y2 
Xf - x0 - x1 - x2 

ips between the various distances involved: 

yf - yo 

Xf 0 - x 

and since x1, yl, x2, y2 are functions of B,, equation (5.28) has to be solved 

iteratively, for example by using a Newton method. R, is then obtained from 

equation (5.26) or (5.27). 

5.5.3 Computational Requirements 

The two important quantities being calculated in this algorithm are B, and 

tf, both by iterative methods involving just a few iterations each. We consider 

here computational requirements for calculation of each of the above two quan- 

tities which are sr,fficient for the second (more accurate) real-time approxima- 

tion mentioned in the last section. Most of the trajectories to be stored may 

be approximated by piecewise linear fits to keep storage requirements down. 

Figure 5.5.5 summarizes the computational requirements. 

In the example case presented and considered in Chapter 6, 8,=38.3" while 
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Storage 

T=O 

> 

Ah 8) 

T=Tmax Ay(fLE) 
on max-turn locus 

thrust switch locus (13,E) 

% 

T=O 

> 
At(E), h(E) 

T= Tmax 
on max-turn locus 

thrust switch locus (B,E) 
zoom climb locus (B,E) 
6-E lines on max-vel 

constraint (see Figure 
5.5.2) 

h(E), At(E), AX(E) on 
A(3 =O path to cruise 

h(E), At(E), AX(E) on 
Ag= 0 chatter line 
(max-vel constraint) 

Computation 

% 

using 
equation (5.28) 

in iterative loop 

tf 
iteratively using 

tl = sum of times on 

separate portions of 
trajectory; t, time 

R 
on cruise=* 

Figure 5.5.5.-Storage and Computation Requirements for E,B Layer. 
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the relative angle between the initial and final points was 38.65'. Hence, the 

B, calculation may be omitted to save computation time with little loss in 

accuracy. 

5.6 Initial Boundary Layer Problem in h -,--- 
5.6.1 h-Boundary Layer Problem and Feedback Solution -__-___._- ..- --_ 

As we discussed previously in Sections 5.4 and 5.5, we have separated the 

vertical plane part of the trajectory from the horizontal turn part. Thus, in 

considering the h-boundary layer we need only look at the vertical plane case 

with a=0 and 6= B,.- Moreover, we assume that any controls which take their 

value on a constraint in slower levels retain the constraint value at faster 

levels.* Consequently, we assume that T is determined (u= 0 if E> EC and u=l 

if Ed EC). With these assumptions the dynamical system for the h boundary layer 

becomes 

(6.1) $- = V siny 

with the equality constraint 

(6.2) 0 = (L+T sinol) -mg cosy 

and the cost criterion 

(6.3) J= cosY + + mg *l(T coscl- D)] dT 

where hE is the optimal adjoint computed in (3.25). The initial condition is 

h = hi and the final condition is h= h*(E), where h* is determined from (3.26). 

The optimal control law is obtained by minimizing or maximizing the expres- 

sion 

*More general solutions without these assumptions are given in the appendices. 
In particular, it is shown that, for turning maneuvers with d't 0, the results 
of Sections 5.6 and 5.7 are extended quite easily. 
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[1-+ cosy+X; & (T coscl-Do-nLaa2)] 

(6.4) 
C 

V siny 

with respect to the pseudocontrol y and the control cx such that the equality 

constraint (6.2) is satisfied. If h<h*(E), then we minimize (6.4) and we must 

restrict ourselves to y> 0. If h> h*(E), then we maximize (6.4) and we must 

restrict ourselves to y<O. Note that the expression (6.4) is an odd function 

of y and that the expression (6.2) is an even function of y. It follows that 

the minimum solution y> 0 is the negative of the maximum solution y<O and that 

a is the same in both cases. Thus, we restrict our attention to the case when 

y> 0. 

To determine the solution y>O that minimizes the expression (6.4), define 

the Lagrangian function g as 

[l-ico~y+Xt& (T cosa-DO-qLaa2)] 

(6.5) 9 = ’ + 
h[Laa+T sina- mg cosy] 

V siny V siny 

where X is an undetermined Lagrange multiplier. Setting JZ- XZ- ay-aa- 0, we obtain 

-the relations 

(6.6) 0 = (+c+hng) - (l+Xi $ (T cosa-DO-a2nLa)+X(Laa+T sina))cosy 

(6.7) 0 = -At $ (T sina+ ZqL,a)+ A(L,+T cosa) 

Assuming that a is small enough to neglect in (6.6), (6.7),* we find that Xmg in 

.(6.6)'is negligible and we obtain the following expression for cosy 

(6.8) 
t 

1+x; mg ’ (T _ Do) = c’s’ 

We solve (6.8) for cosy and then obtain a from (6.2). Note that for values of h 

*This approximation is quite good for T=Tmax, but needs refinement for T= 0 case. 
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close to h*, the expression (6.8) may exceed 1 slightly (by .02) due to the 

absence of the nonzero a in the denominator. In this case we can either set 

y*= 0, since it will be very close to 0, or we can use a method of successive '. 
approximation to obtain a better approximation--for example, solve (6.2) with 

y=O and use this approximation of a in (6.6), (6.7) to obtain a better approxi- 

mation of y. In Appendix 5.2 we have carried out a more careful analysis of 

the solution of equations (6.2), (6.6), (6.7) usi,ng perturbation ana1ysi.s. Fig- 

ure 5.6.1 summarizes the control law computations for the h-boundary layer. 

The adjoint hc for the h-boundary layer is obtained from solving 

(6.9) 0 = 1-i 
C 

co~y+At f (T cosa- Do- nLop')+hj;V siny 

for Xi^;, where y and a take their optimum values for the h-boundary layer problem. 

5.6.2 Computational Requirements 

The computational requirements at this stage are rather minimal. All storage 

requirements have been accounted for on slower levels. Likewise, the adjoint 

X2 has already been calculated. Hence, the only computational requirement is to 

calculate y from (6.8) and a from (6.2). Figure 5.6.2 sutnnarizes these minor 

requirements. 

5.7 Initial Boundary Layer Problem in y 

5.7.1 y-Boundary Layer Problem and Feedback Solution 

We make the same assumptions for this problem that we did for the h-boundary 

layer. In particular, we assume that T is fixed, and a=0 and 6= 8,. The dynamic 

system for the y-boundary layer becomes 

(7.1) g = Laa+T sina-mg cosy 

with the cost criterion 

(7.2) J = cosy+$ & (T cosa- D)+ $V siny] dT 
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Read in h 7 
Compute y=yo from 

(6.8) or by successive 
approximation 

V 

Compute a from 
(6.2) with y=yo 

h<h*(E) 

Figure 5.6.1.-h-Layer SPT Algorithm. 

Storage 

None 
(accounted for 
at slower levels) 

Calculation 

(from 7ii.8)) 

(from 7Z.2)) 

Figure 5.6.2.-Storage and Computation Requirements for h-Layer. 
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The optimal control law is obtained by minimizing or maximizing the ex- 

pression 

(7.3) 
l-ic~~~y+ht 6 (T cosa- Do-nL,a')+AiV siny 
.-___i_.._.--. ~_ 

Laa+T sina-mg cosy 

with respect to the control a. If y<-y*(E,h), then we minimize (7.3) and we 

must restrict ourselves to a such that Laa+T sina-mg cosy>O. If r.>y*(E,h), 
then we must maximize (7.3) and we must restrict ourselves to a such that 

Laa+T sina-mg cosy<O. 

Taking the derivative of (7.3) gives us 

(7.4) {-(Laa+T sina-mg cosy)(At & [T sina+2nLaa]) 

-(La+T cosa)(l-+cosy+At & (T cosa-D)+XiV siny))(Laa+T sina-mg cosy)-' 
C 

When either E> E, and y<y* or when E< E, and y>y*, the expression (7.4) is 

When 

and 

negative. Hence: in these cases the expiession (7.3) is decreasing in a. 

E<E, and y>y*, we want to maximize (7.3) so we choose a=O. When E>Ec 

Y <Y*, we want to minimize (7.3) so we choose a=as. 
To solve for a in the other cases, we set (7.4) equal to 0 and we neg lect 

terms in a higher than linear.* Define a0 by 

(7.5) a0 = w 
a 

Then setting (7.4) equal to 0 gives the following quadratic equation, 

(7.6) a2 - aoa + k = 0 

where k is given by 

*In Appendix 5.3 we have considered a higher order approximation. 
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V 
l-vc COSY + A$ mg ' (T-DO)+XiV siny 

(7.7) k = 

A? mg ' (T+2nLa) 

Note that k<O for E< Ec and k>O for ExEc. The solution c1 is given by 

when E< Ec, and 

(7.9) 

when E>Ec. Figure 5.7.1 summarizes the feedback law in this case. 

5.7.2 Computational Requirement 

As for the h-boundary layer, the computational requirements at this stage 

are rather minimal. All storage requirements have been accounted for on slower 

levels. Likewise, the adjoint Xt has already been calculated. The adjoint Xi 

must be calculated from (6.9) at this level. Finally, a is calculated from 

(7.8) or (7.9). The computational requirements are summarized in Figure 5.7.2. 

Storage 

None (all 
accounted for 
on slower 
levels) 

Calculation 

A" 

(fromh(6.9)) :': 

"0 
(from (7.5)) 

(fro: (7.7)) 

(fro: (7.8) 
or (7.9)) 

Figure 5.7.2.-Storage and Computation Requirements for y-layer. 

A pictorial representation of the control problem is given in Figure 5.7.3. 
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Read in E,y crl 
E>E 

Figure 5.7.1 

Feedback Control Lawa(y-Yk) in the y-Boundary Layer 
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y-trajectories viewed on the 

Surface corresponding 
to the optimal y* time 
history determined from 
the h-boundary layer. 
a is used to control 
y-state to this 
surface. 

Figure 5.7.3 

y-Boundary Layer Control 
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The y-trajectories are shown on two time scales, t and -r=t/~. The t time scale 

corresponds to events in the h-boundary layer and the change in y on this time 

scale appears instantaneous. Case I shows a trajectory for y*= 0 and y>y*, 

E<E,. From Figure 5.7.1, the optimal a=0 till y=y* and a = [equation (7.8)] 

when y<y*. The asymptotic value of a is determined from the a-value on the 

h-boundary layer,.namely a=$--. Notice that a sl.ight undershoot in y would 
a 

occur and some form of anticipatory action may be used to reduce this undershoot 

and consequent chatter. 

y(r=O)<y* and 2, EC. 

Case II corresponds to an asymptotic value y=y*, 

For this case, Figure 5.7.1 shows that the optimal 

value is as till y(~)zy* and a=[equation (7.9)] for y<y*. In practice, it 

would be better to set a to its asymptotic value once jy-y*l is less than a 

small threshold value. An alternative would be to switch to linearized control 

once ly- y*I decreases below a prespecified value. A similar logic should also 

be used for other boundary layers. 
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APPENDIX 5.1 
. .' DERIVATION OF THE EXACT E,f3 SOLUTION 

A5.1.1 Introduction 

-As we saw in Subsection 5.5.1 of Chapter 5, the equations of motion for the 

x,y,E,B system (referred to as the energy-state approximation in Parsons (1972))" 

are 

(1.1) i = 
V(T- Do- DLsec20) 

W 

(1.2) ,e = v 

(1.3) ;( = v COSB 

(1.4) j, = V sinB 

E, 6, x and y are the four states and T, V and G are the three controls. The 

three states V, h and y of the original dynamic equations have been reduced to 

the single state E and V or h becomes a control variable. Essentially, the 

assumption introduced here is that V and h can be changed instantaneously at 

constant E by zoom climbs or zoom dives. For consistency with equations (1.3) 

and (1.4) these maneuvers also occur without changes in x or y. Section 5.6 of 

Chapter 5 presents the concept of boundary layer corrections to smooth out zoom 

climbs or dives as in Figure A5.1.1. 

I corrected 
solution zoom dive at 

h 

zoom maneuvers 

Figure AS.l.l.-Concept of Boundary Layer Corrections. 
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The major assumptions implied in the equations of motion (1.1) to (1.4) 

are as follows: (a) change of mass is negligible, (b) cosine of angle-of-attack 

is approximately one, (c) the normal component of thrust is negtyigibte compared 
to zip. 

The boundary conditions that go with the formulation of (1.1) through (1.4) 

are for a turn to a point: 

(1.5) E(0) = E. E(tf) = Ef 

0.6) 6(O) = 60 B&l = Bf 

(1.7) x(0) = x0 Xbf) = Xf 

(1.8) Y(O) = Yo Y(Q) = Yf 

ahd for a turn to a line: 

(1.9) B@f) = n/2 (rotate x-axis so that it is 
normal to objective line) 

(1.10) x(t,) = Xf 

(1.11) y(tf) = free 

The constraints on the three controls are: 

(1.12) 0 = Tmin 5 T I Tmax(h,M) 

(1.13) Ial s a&Las) 

(1.14) V 5 V,,,(E) 

(1.15) 10) 5 am 

The minimum or idle thrust is .assumed to be zero. os is the bank angle 

which yields the stall angle-of-attack as =12” at an existing energy and velocity 

from the equation: 

(1.16) as = 
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The 'max constraint combines an approximate maximum air speed limit, a maximum 

Mach number contraint;and a positive altitude constraint. Figure A5.1.2 shows 

the form of this constraint. The maximum bank angle constraint am is a maximum 

normal load constraint: 

. 

(1.17) normal load in g's = vf3 = tana 

assumed to be 4. Thus?sm = 76”. 

The auxiliary equations that relate all the variables present in the equa- 

tions of motion (1.1) to (1.4) are 

(1.18) V2 h = E - 29 

(1.19) a = W sect 
L a 

by using the assumptions cosy= 1 and +-0, 

(1.20) L = aLa 

(1.21) D = Do+ DLsec20 

(1.22) q 4 $pV2 

(1.23) La 4 CL qs 
a 

(1.24) Do 4 CD qS 
0 

(1.25) DL 4 $ 
a 

and the following constants: 

S = 49.239 m2 
(1.26) 

W = 1.5569~ lo5 N 
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F4 @ 1.5569x lo5 N 

I 
(3 CONSTRAINT 

iii 
= 15.0 - 
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2 

z 
lO.O- 

5.0- 
h&O CONSTRAINT 

L 
o- 

, 

100 200 300 400 500 600 

MAXIMUM VELOCITY, Vmax (ms-') 

Figure A5.1,2.-Ymax Constraint as a Function of Energy-Height. 



The example aircraft being used in this work is an early version of the F-4., 

Sonic speed c(h), density p(h), lift coefficient slope CL (M), zero lift drag 
a. 

coefficient CD (M), aerodynamic efficiency factor n(M) and maximum thrust 
0 

TmxhM) are tabulated functions. The numerical treatment of this data so as 

to provide continuous values by construction of spline fits was described in 

Chapter 2 and so will not be discussed further here. 

A5.1.2 First-Order Necessary Conditions 

For this problem the Hamiltonian may be written as 

(1.27) 

where 

(1.28) 

AEV H = 1+w (T-Do-DLsec20)+XBg q +XxV ,cosB+AyV sin6 

+ plT(T- Tmax)+~2(W Eeca -as)+y3(V- Vmax)+llq(tan20-tan20m) 
a 

Euler-Lagrange Equations 

if 

if 

if 

if 

if 

if 

if 

if 

0~ T< Tmax 

T= 0 or T=Tmax 

14 <OS 
Id = 0s 

'< 'max 

'= 'max 

Ial “m 
1’1 =*m 

W seca aI. 

+ '2 L 2 aE 
avmax 

o! + p3aE 
a 
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(1.30) x, = -?!I$ 

= AxV sir-@ - XyV cosB 

(1.31) .' q= -?g ='O 

(1.32) i, = -g = 0 

Hence both A, and Xy are constant. 

Optimality Conditions ---- 

(1.33) 

(1.34) 

(1.35) 

al-l - 0 -- 
aT 

xEv = -r + pl(2T-Tmax) 

aH - 0 -- 
aa 

2DLVXEtana + 
W sew 

W lJ --p + 2 L 2u4tana 
a 1 

?k!=,=k(TmD aDO aDL 
av W 

o- DLsec20 - V av - V T sec2a) 

aT,X 
+ Xysinf3 - qT n-- - u2 .____ - 

Transversality Condition 

(1.36) H(tf) = 0 

Also since the Hamiltonian is implicit in the independent variable, time, 

we have 

(1.37) H(t) = H(tf) = 0 

167 



Equations (1.1) through (1.8), (1.28) through (1.35) and (1.37) are the ; 

first-order necessary conditions for a minimum-time turn. 

A5.1.3 Legendre-Clebsch Necessary Conditions for a Minimum (2@ Order Conditions) 

The Legendre-Clebsch necessary condition for a minimum is 

if det Huu =0, then the time optimal trajectory is a singular arc. 

The components of H,, have the following form:. 

(1.39) 

(1.40) 

(1.41) 

(1.42) 

(1.43) 

(1.44) 

A5.1.4 

HTT = 29 

H aT = HTa = 0 

lE aTmax 
HVT = HTV = V - pl av 

H = sec4u 
2DLVXE 

- + ~ w cos30 
uu w 2 L --- 2114 

a 1 
2 - VX tana 

HVo = Hc,, = set o 
2DLXEtano _ 2 ;yDL WE aLa sina 

W - U2w av? 
a I 

sec'a 1 

Existence of a Maximum Mach Number Straight Cruise Arc 

Parsons (1972) gives a full justification for the existence of a singular 

arc with straight flight using intermediate thrust and maximum Mach number using I 
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equations (1.29) through (1.35) and (1.38) thrqugh (1.44). We will only pre- 

sent the characteristics of this cruise arc here. '. 

The cruise energy and velocity are given by the relation 

aVmax (1.45) r = 0 

,\ 
,! 

Since the maximum velocity constraint is of the form shown in Figure A5.1.2, 

I 
the energy at which (1.45) is satisfied is unspecified at or a,bove 29.949 Km. 

1' As it is expected that initial and final energies will be below the minimum 
I 
1 cruise 
I 
! 

1' (1*46) 
t 

: ' 
! I (1.47) 

energy, this value is chosen as the cruise energy. Hence we have 

(1.48) 

(1.49) 

(1.50) 

Ec = min[E] = 2.9949 x lo4 m 
av 

max - 
aE 0 

v*=; =v 
max max(E) = 590.2 ms-l 

av 
maxq-J 
aE 

u* = 0 

A 
T* = T 

C = DO(Vmax~Ec) + DL(~,,,Jc) 

hC 
= 1.2192 x lo4 m 

Equations (1.46) to (1.50) characterize the cruise arc and so at present 

we only consider a three-dimensional turn to a point or onto a line which is 

far enough away from the starting point so that a cruise arc is reached during 

the flight. The length of the cruise arc is determined so that the horizontal 

plane boundary conditions are satisfied. Thus, the initial turn to cruise arc 

and the final turn from the cruise arc can be determined separately. The solu- 

tion therefore consists of three parts: (1) initial turn to cruise arc, (2) 

flight along cruise arc, (3) final turn to required point from cruise arc. 

A5.1.5 _Formulation of the Initial Turn 

AS the coordinate system can be rotated so that the cruise heading, 6,= O", 
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we only consider an initial turn onto the line y= 0 within the cruise arc as in. 

Figure A5.1.3. 

In order to facilitate the formulation of the initial turn we assume that 

the turn contains a constant radius turning segment with T*=Tmax, E= EC and 

V*=i,ax.as in.Figure A5.1.4. 

/The cost function;J, for minimum time to x= 0 is 

-X 
(1.51) min 1 J = - + RminSinBl _ R min% + 

T,u,V 'max 'max ^v max 
L J w 
time in cruise 

-- 
time in time in 
turn at turn at 

v = imax v < imax 

subject to the equations of motion (1.1) to (1.4), and the boundary conditions 

are now 

(1.52) E(tO) = E. E(tl) = EC 

(1.53) B(to) = B()<O fell = By free parameter 

(1.54) x(t(-j) = x0 x(t1) = RminsinBl, free (strictly, 

x(t1) = RminsinBl+xf, but without 10~s 

of generality xf= 0.) 

(1.55) Y(to) = Yo y(t.1) = Rmin(l-COSBl), free 

(1.54) and (1.55) are obtained from the geometry of the problem. 

A5.1.6 Determ.ination of the Optimal Initial Turn Trajectory 

The'variational Hamiltonian is the same as equation (1.27) and first-order 

necessary conditions and first integral as in equations (1.29) to (1.37). The 

following terminal adjoints may be obtained from (1.51): 

(1.56) "X&tl) = unknown 
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initial 
turn 

v=v max 

1 cruise final 
arc 

Y 
turn 

Figure A5.1.3.-Break-up of Trajectory: Initial Turn, Cruise Arc, 
Final Turn. 

v*=^Vmax 

o<Tc'Tmax 0 
I 

E=Ec 9 

u*=(-J 

min 

X 

Figure A5.1.4.-Constant Radibs Turning Segment W.ithin .-Initial Turn. 
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(1.57) 
-Rmin 

qtl) ^v = - (1 - coq 

max 

(1.58) Xx(tl) = -1 

'max 

(1.59) Xy(tl) = 0 

With the results (1.58) and (1.59), equation (1.30) becomes 

(1.60) iB = -; sinB 
max 

It is intended to integrate the state and adjoint equations backwards from 

time tl, hence determination of XE(tl) together with the values of the controls 

at tl will parameterize the whole problem in terms of 61. The value of tl is 

also in terms of 61: 

(1.61) 
-81 

t1 = B 
v = Smax 
E=E, 

Controls at Time tl 

On the constant radius segment, bank angle for constant energy will be 

(1.62) = tan -1 u 
C 

= 59.2” 

since i=O 

^v ^v 2 
(1.63) Rmin = Tip; 

max 
= g tana, 

= 2.1195 x lo4 m 

I max 
IE=E, 
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(1.64) T = Tmax(imax,Ec) = 10.45~ lo4 N 

(1.65) V = tmax = 590.2 ms-1 

Determination of XE(_tl) 

Using (1.34) when Ial <os and 1~11 <urn so that pl=p4=0 and a=ou=optimal 

unconstrained bank angle, 

(1.66) XE = 
wfj 

2DLV2tanou 

for continuity, 

(1.67) tana, 

(1.68) v t - 
1 

% 

= tanoc 

= 
'max 

Using (1.57), (1.63), (1.66) to (1.68) we have 

(1.69) +l) = 
-W(l-cosq 

2 2DLVmaxtan cc 

Thus the initial turn problem has only the single parameter Bl to be selected 

to satisfy a given E. at B. or vice versa. 

Choice of Optimal Controls Along Trajectory 

The optimal bank angle is obtained from 

(1.70) o* = min [uu,os .o,l 

where urn is given by equation (1.17) and us by equation (1.16). The unconstrained 

optimal bank angle, uu, is obtained from: 

(1.71) uu = tan-l 
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Equations (1.28) and (1.33) require. that: 

(1.72) 
'Ev 

xE > 0 if T=O since ul = ~1 0 
max 

(1973) $ = 0 if O<T<Tmax 

(1.74) 
-hEV 

XE < 0 if T=Tmax since pl = WT--- 1 0 
max 

Hence an observation of the sign of AE determines the optimal thrust. A 

more complete derivation of u* and T* appears in Parsons (1972). 

The.optimal velocity could be obtained from the remaining optimality con- 

dition equation (1.35) with equation (1.28). This requires a one-dimensional 

sear&in V at.constant state from the Vmax constraint to a value around the 

stall velocity. However, to eliminate the need to calculate the partial deriva- 

tives of equation (1.35) in the search, the optimum velocity was obtained by 

minimizing the variable portion of the Hamiltonian: 

(1.75) V* = arg min 

VLM<V<Vmax 

(T*- Do- DLsec2u*) + AD- v cosu* 

Rax I constant 
'state 

where VLM is the lower limit of the search. 

& Equations 

Using hx=--J--- 

'max 

and X y= 0 and equations (1.33) to (1.35) 

equation (1.29) for iE becomes: 

(1.76) 
aDL ai 

+ a~ sec2u - <e 

to get the p(t), 

when Ial <us and V<Vmax 



(1.77) 

..: 

aDL DL+V r sec2u + ) 1 
when Ial <us and V= Vmax 

* 

.: I. 
. 

‘.. 

(1.78) 
aDL aT 

+ r sec2u - cfl 
2DLvXE 

----. 
WLucos?Y 

‘. 
when Ial =uS<um and Y<Vmax 'i. 

XEV aDo ao, aT 
(1.79) iE=~ z+rsec2u - E;p 

( 

av 

) c 

+e F 

max 

aLct 
+ aV 

when Ial =us and V= Vmax 
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(1.80) 
aDo aDL 2 aTmax -- aE + aE set u - 5 aE 

aLa 

av 

aDL DLtV r sec*u + ) 1 ABg tanu 

V2 

when Ial =us=um and V<Vmax and where <=l if T=Tmax and c=O if T=O. 

This completes the formulation of the initial turn problem with the single 

parameter B1. A choice of B1 specifies all the initial conditions for the back- 

ward integration of the i!, 8, ;(, i, x, and x, equations to produce an optimal 

trajectory to satisfy a given E. at B. or vice versa. 

A5.1.7 Alternate Single Parameter Formulation 

The formulation of Section A5.1.6 shows that u=uc= 59.2" at t=tl. The 

optimum bank angle is almost zero until t is very close to tl, thus producing an 

extremely sharp spike in u. This is very pronounced for 1~~1 < lo ~10~~. As in 

Figure A5.1.5, since digital computations are being used, u is held constant 

over each integration step, thus broadening this spike in bank angle. To 

attempt to follow the sharp change in u more accurately, the step length must 

be reduced considerably, resulting in increased computation time. Thus, to 

avoid these numerical difficulties, an alternate single parameter formulation 

may be obtained using Ag(l) as the parameter and integrating backwards from t=l 

instead of t=tl. A review of the results for 0 <t< 1 for small 1~~1 revealed 

that XE, E and x are all independent of X6 and 6. Hence the values of XE(l), 

E(l), and x(l) for 16,l = lo6 can be used as initial values to begin integration 

at t= 1 for trajectories given by Ifill < 106. These values are: 

(1.81) XE(l) = -1.52~10~~ m-is 

(1.82) E(1) = 2.9907x104 m 
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integration 

step\ 
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i 
I 
I 

c- -- 

-constant velocity 
U c turn 

~computer bank angle 
held constant over 
one integration step 
from t=tl 

-actual bank angle 

Figure A5.1.5.-Numerical Problems in Following Spike in Bank Angle. 

(1.83) x(1) = -0.0278 x Rmin m 

The controls at t= 1 can be taken as 

(1.84) V"(1) = ^Vmax 

(1.85) u*(l) = 0 

(1.86) T*(l) = Tmax 

Further, a study of the solution near t=tl from Parsons (1972) gives an 

approximate value for p(l) as: 

(1.87) B(1) = 0.53 X&l) 

Thus we now have the initial turn problem parameterized by X6(l) to be 

selected to satisfy E. at B. or vice versa. 



A5.1.8 Numerical Results for Initial Arc 

Several.optimal trajectories were obtained by variation of the parameter B1 

or hB(1). Parsons (1972) shows that the complete set of initial conditions is 

covered by.the range of parameter values O<f$ < -2.15". 

about 10 -3 
For values, of lB1l above 

, the entire initial turn is on the maximum velocity constraint. For 

[s,I ~10~~ the X8(1) f ormulation was used and we present here the characteristics 

of the optimal trajectory obtained for a choice of X8(1)= -lo-l7 which displays 

the zoom dives that reflect the energy-state approximation used in the solution. 

Figure A5.1.6 shows the flowchart for obtaining an optimal trajectory back- 

wards in time from the cruise arc. Box A and the dotted feedback loop indicate 

logic to choose the correct value of the parameter B1 or XB(1) to arrive at 

specified initial conditions E. and Bo. This logic would interpolate between 

the family of B1 or X6(1) trajectories (flooding method). This may involve a 

few iterations on those parts of the trajectory where B changes. 

For the example trajectory chosen (X8(1)= -10-17), the stopping criterion 

used was to test if the Ial =cm=us locus had been reached. This is the point 

where the angle-of-attack, 01, and the bank angle are at their maximum values 

simultaneously. Figures A5.1.11-A5.1.23 give the time-histories for all the 

states and controls and for some of the derived variables.* The changes in 

velocity and altitude appear in Figures A5.1.13 and A5.1.14 where the zoom dives 

clearly indicate the instantaneous tradeoff between height and velocity. Figure 

A5.1.15 reveals that the whole initial turn consisting of 104" is completed 

within the first minute of the trajectory. The change in u (Figure A5.1.16) is 

also completed in the first minute corresponding to the change in heading angle. 

The spike in o introduced by the constant velocity turn upon reaching the cruise 

arc may be ignored in practice with no effect upon the optimal trajectory. Note 

that the entire initial turn is accomplished using T*=Tmax: the changes appear- 

ing in Figure A5.1.17 are due entirely to the changes in height and Mach number 

upon which Tmax depends. As expected from Figure A5.1.4 where the initial turn 

was formulated, the necessary adjustment in the y coordinate is completed in the 

first minute (Figure A5.1.19) during the change in heading angle. Figure A5.1.21 

shows the time-history of the derived variable CL Notice that a=12" at the 

beginning of the turn where Ial = om=us which is the max turn locus. Figure A5.1.24 

*The Figures A5.1.11-A5.1.42 are collected at the end of Appendix 5.1. 
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given initial conditions: EO.60 

guess may be made 
I 

r 
-----_--- ---___ -q- - _-_ - 

a&l) 
r- 1 

1 

I 

choose 61 or h,,,(l) to satisfy Eo,Bo. The beta-energy space can be divided 

into regions corresponding to values of 61 or X6(1) so that a'best initial 

+ 
initialize variables 

for backward integration 

Is11 2 1o-6 
determine tl from (1.61) and: 

E(tl) - Eqn. (1.52) 

B(tl) = 61 

x(t1) - Eqn. (1.54) 

y(t,) - Eqn. (1.55) 

+pl) - Eqn. (1.57) 

$(tl) - Eqn. (1.69) 
u’(tl) = UC - Eqn. (1.62) 

Wtl) - Eqn. (1.64) 

V*(tT) - Eqn. (1.65) 

I 

initialize variables 
for backward integration 

-lo-l9 s a& 1) s -10-6 
determine 

E(1) - Eqn. (1.82) 

B(l) - Eqn. (1.87) 

x(l) - Eqn. (1.83) 

XE(l) - Eqn. (1.81) 

V*(l) - Eqn. (1.84) 

o*(l) - Eqn. (1.85) 

T*(l) - Eqn. (1.86) 

G 
determine optimum controls 

determine o* and T* at each step using Eqns. (1.16), (1.17). (1.70). (1.71) 
and (1.72) to (1.74) and V* every 4th step using (1.75). This consists of 
minimizing the variable portion of the Hamiltonian using a l-dimensional 
search in V at constant state. First the whole range in V is scanned a-t 
7.5 m/set intervals to locate the local minima. Once the presence of a 
minimum is detected a Golden Section algorithm is used to determine its 
exact location. A comparison of all local minima determines the global minimum. 

Using a 4th-order Runge-Kutta routine integrate one step of Eqns.: 

k - Eqn. (1.1) 
I? - Eqn. (1.2) 

i - Eqn. (1.3) 
. 
y - Eqn. (1.4) 

iE - one of Eqns. (1.76) to (1.80) 

I, - Eqn. (1.60) 

Using u*, T*. and V* 

_ _ _ _ _ _ _ _ _ _ _ _ - - _ _ - - .’ 

Figure A5.1.6.-Flowchart for Optimal Trajectory. 
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is an altitude-range profile of the trajectory where the very fast.cha.nges in 

altitude are clearly visible. The variations in Mach number with range appear 

in Figure A5.1.25. The various combinations of initial conditions (BO,EO) that 

can be reached with this X6(l) value can be seen in Figure A5.1.26 while Figure 

A5.1.27 shows changes in o with energy-height. The horizontal plane projection 

of the initial turn trajectory appears in Figure A5.1.28. 

A very interesting view of the trajectory is obtained from the altitude- 

Mach number profile of Figure A5.1.29. The energy contours have been added in 

as well as the [crl =am =us maximum velocity constraint and the c= 0 with stall 

constraint. Starting on the maximum turn locus, the trajectory consists of a 

dive at approximately constant energy till the velocity has increased to about 

0.9 M. The velocity remains approximately constant at 0.9 M while the trajectory 

gains altitude. Using Figure A5.1.26 which gives the change in 8 with energy 

together with the altitude-Mach number profile, the progress of the trajectory 

can be interpreted with regard to the change in heading angle as well. By the 

time the heading angle relative to cruise is below about 5", the trajectory 

essentially coincides with the AB= 0 min-time path of Parsons, Bryson and 

Hoffman (1975). The trajectory follows this path to the Vmax constraint and 

then at Vmax to the cruise point. 

A5.1.9 Formulation of the Final Turn 

There are two general types of final turns: (1) those beginning with a 

period of constant energy-maximum thrust turning and (2) those beginning with 

minimum thrust and straight bank angle chatter. Each of these is 

in detail. 

(1) Turns beginning with maximum thrust. The approach here 

that for the initial turns. We assume an initial turning segment with T= Tmax, 

E= EC and V= imax as in Figure A5.1.7. 

The minimum time cost function may 

min 
x2 RminSinB2 + 

J=,-- A 

be expressed as: 

R minB2 + 
* I-. 7 tfdt 

now described 

is similar to 

t,u,v 1 V V max max V Jt2 
amax 

J 
Y 

time in cruise. time in time in 
turg at tur! at 

'= 'max V<Vmax 
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. . 
: . 

5 
El = EC 

:. 
v*=.^v 

. 
E,=:Ec ” 

O<T*<Tmax.: 
u*=q 

Figure A5.1.7.-Constant Radius Turning Segment Within Final Turn. 

subject to equations of motion (l.l)- (1.4), (l.lZ)- (1.15) and the boundary 
conditions 

E(tp) = EC E(tf) = Ef 

fHt& = Bp free parameter Bbf) = Bf 

x(t,) = Xf x(t2) = Rminsinfi2, free 

y(t,) = ~inW~cosf32), free Yhf) = Yf 

The Hamiltonian for the problem is as in equation (1.27). The first order 
necessary conditions and first integral are given by (l.Zg)- (1.37). We now 
have the follow+ng initial adjoints derived as for the initial turn: 

+tt2) = 
-w(l- coss2) 

L 2DL~maxtan20c 

+,p*) = -*mjn(l - ~0s~~) 

^vmax 
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1 
.‘. 

my ,=,. :: ‘. : -. .’ - - _- 

,.I’ ,,.& 

?‘. ,-.’ ,’ ” ;‘. ’ . . 

.a.. , ., . . : 

..‘, 1 

The determination of'the optimal final"turn trajectory closely parailels"that' 
) ';.: 

Gf- the initial'turn as given by equations- (1.60) - (1.6O);wlth appropriate sub- 

script changes. The state and adjoint equations are integrated forwards'from 
time t2 and the problem is parameterized in terms of.B2.' 'At'each step the'opti- 
mum controls are evaluated using equations (1.70) - (1.76). 

(2) Turns beginning with minimum thrust and bank angle chatter. These 
.: _ 
turns require an'initial period of straight'fl:ight with minimum thrust and bank 

angle chattering between positive and negative minimum values. This is a maxi- 

mum deceleration arc and is similar'to a singular arc as it only occurs with 

% =O. The Hamiltonian with X6= 0 is given by: 

xEv H=l+W (T-Do- D2sec20) + XXV cos6 + XyV sir@ 

which is independent of the sign of the bank angle. Application of the Minimum 
Principle yields: 

T* = o thE ’ O) 

u* =.+o 
chat(') 

xEv - w (Do+ DLSeC2uchat ) + XXV cosB, + AyV 

where o chat(') = min[as(V),um] 

% 
= cruise heading 

Note-that as a result of our modeling, bank angle can be changed instantaneously 
and so an equal time chatter between positive and negative bank angle can be 
made,so that f3=0 on the average and hence A B remains zero. For a better under- 

standing of the geometry of the problem consider the Minimum Principle applied 
. . 

to the problem with 6,= 0 so that Xy= 0: 
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For a given state the state-velocity space 
in Figure A5.1.8 considering just a single 
was,a,n.aid. in the determination, of optimal . . . . ., ! ., .,(, t 

(hod,ograph) appears ppproximately as 
section in each plane. This approach 
velocity when T*= 9,. .As Sn .F.ig.ure.. % I.,' .- 

space has a non-convex nature so,thatYafter ,I. '. 
thg solution can be expected to $qp at.soye .., 

.@Hyt; ,pl ong L :he ~ trajecpry fry t"g :.y: h 0, VT'= vmax,:, u*:= .> .., 
V* for Ial =bs=o~,'ju*j,,+us= 

u,.corner to the T*:Q,. . 
urn corner of.the state-velocity space. .This kv9v7 

ledge reduced the one-d&nsional.search in'velocity,described in<equation"(1.75) : T' :,7,. I , ..‘I . , 
to.jus,t a.ch,eck at. thepe't@,vel.ocities. . ._ '. As a re‘sult computation tjme was grea$ly 
reduced. I.* ..I 

,The turns-with bank angle'chatter may-be formulated as follows: 
I 

Eo= EC E+ EC 

E = EC BO =0 9 =0 

I 
V” = vmax to 

IsY ,-x .‘X 
O<T*<T r ,,.+_ m.a.x y 

u* = 0 ' 
_c 

I 

_. .’ . . _ 

eT 
\ 

*=0 or T*=Tmax 

1 
Efdfafdf 
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-0 
m . 

,B 

0 0 

Figure A5.1.8.-Sections Through State-Velocity .Space (Hodograph). 

with the cost function expressed as: 

T*=O 

time in time in chatter time in 
cruise turn 

which is 

+ 
T*=O 
u* = "uchat 
v= Vf 

subject to equations (1.1) - (1.4) and (1.12)-(1.15) and the boundary conditions 
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f(tl) = El, free parameter E(tf) = Ef 

ml) = 0 ., "f3(kf) = Bf 

x(t,) = xl(El), free .x(tf), E Xf 

Y(tl) = free 

The Hamiltonian and first-orderconditions are the same as before: (1.27) and 
! / I (1.29) - (!.37.).wi't:h..the initial adjoints . . 

0" = +"c,,at 
v= v* 

". ii('$) ='d for ,continuity across juncture with chatter arc 

hx(tl) = -1 
'max 

Xy(tl) = 0 t 

Again we have the problem parameterized in terms of a single parameter El. 

A5.1.10 Numerical Results 
Parsons (1972) presents numerical results using the theory described above. 

Figure A5.1.9 gives the family of trajectories in the beta-energy plane and the 
regions marked I to VIII are described by means of the control programs in 
Figure A5.1.10. i For the chatter cases tl has to be,determined by integration 

of the equationi 

U *=+u chat 
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FINAL ENERGY HEIGHT, El (x lo3 m) % 

Figure A5.1.9.-Change in Heading for Variable-Altitude Final Turns 
From Cruise Arc. 
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Type 
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Thiwst 
Program 

T 
IMX 

T 0 
IXlX’ 

T max' '9 Tmax 

T max 

0 

0 chatter f(TChatS Urn9 U,,,=Us 

OS Tmax 

0 

Bank Angle Program 

u 
C 

, up<u , urn, u m m='s 

(I, ucaY~u, urn, 
C m u m='s 

u , 
C 

uC<ucu ,,a-,a =u m m s 

u 
C 

fU<U,, urn, um=us 
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Line of Fig. 3.5.3 
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II 

III 

IV 

‘V 

VI _.’ 

VII 

VIII 

Figure A5.1.10 

Sumnary of Control Programs for Variable-Altitude Final Turns.from Cruise Arc- '.. '. : '. 
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and then the four states and two adjoints were integrated from tl to tf. As in 

Figure A5.1.9 the zoom climb when V* jumps is followed after a short while on 

the max-turn locus by a switch to Tmax from T= 0. As explained'earlier, corn- 

putation time here was considerably lower than that in the' initial turns because 

of the knowledge of the non-convex nature of the admissible state-velocity space 

reducing the search for V* to just two points. , 

Trajectories beginning with maximum,thrust were of the same form as those 

with chatter except that there is no straight flight portion. In the altitude- 

Mach space, the trajectories move down the maximum velocity constraint and then 

zoom to the max-turn locus as for the example case. The constant energy turning 

is with T=Tmax followed by T= 0 on the max-velocity constraint through the zoom 

and onto the locus. After a short stay on the locus, thrust switches back to. 

max. These turns are suitable when the final energy is high, that is, around 

24 - 28 Km. 

A5.1.11 Computational Efficiency 

In obtaining the example trajectory of Figures A5.1.11 to A5.1.29, a ratio 

of about 2:l resulted for CPU time:real time. It is possible to reduce this 

ratio to at least 1:2 by making the program more efficient. It is worth men- 

tioning that substantial improvements were made to arrive at the value 2:l as 

initially the ratio was of the order of 1O:l. This was achieved by allowing a 

tolerance of 15.2 m and 0.001 M on the spline fits for all the tabulated data, 

i.e., for changes in altitude and Mach number less than those above, new values 

of aerodynamic or atmospheric data were not obtained. The sacrifice in accuracy 

was minimal. Another time-saving method was to increase the storage in the com- 

puter (e.g.., spline coefficients) so as to avoid calling standard spline fit sub- 

routines too many times. 

In analyzing the distribution of CPU time among the major computations re- 

quired, it was found that the calculation of V* was heavy on time. Hence, the 

frequency of this computation was reduced to every 4th step which resulted in a 

considerable decrease in CPU time. The sacrifice in accuracy began to show up 
th when the frequency was reduced to less that every 4- step. In order to under- 

stand the structural form of the Hamiltonian F(v), the curve was plotted out at 

various stages along the trajectory. Figures A5.1.30- A5.1.42 cover the major 
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changes in F(V) and.hence V*. As expected, these. occur along the zoom maneuvers. 

where velocity is traded for altitude at constant enqrgy and in very little time. 

An anticipation of when these jumps in .V*, occur (i.e., when zoom maneuvers are .a 
made) will allow a reduction in the range of V over which the search is made 

for V* at points along the trajectory between zoom dives. 

For real-time implementation (Subsection 5.5.2) computation time is con- 

siderably reduced by storing parts of the trajectory (e.g., the Af3 = 0 minimum 

time'path). 
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Figure A5.1.14 Changes in altitude with time 
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APPENDIX 5.2 I i' .a 
HIGHER ORDER APPROXIMATION FOR h-LAYER SOLUTION 

; . . 

The exact solution of the a,~ controls for the h-boundary layer requires 

solving three simultaneous, nonlinear equations for a,y and a Lagkangian multi- 

plier X. These equations are 

(2.1) 0 = (L," + T sincc) - mg cosy 

(respectively equation (5.6.2) of Section 5.6) 

(2.2) 0= + + Amg " (T,.coscl 
C > 

- [l + ACmg -.Do -a2nLa) + x(L~T+T sina)]cosy 

(respectively (5.6.6)) :' 

(2.3) 0 = -At & (T sina+ 2nL,a) + X(La+T coscl) 

(respectively (5.6.7)). r. 

Note that the validity of equation (2.3) depends on the optimal $not occurring 

on one of its constraints (i.e., O<cr<crs must be true). 

We assume a power series expansion for cosy and.:J which solves (2.2), (2.3) 

simultaneously. That is, suppose that if cosy~c(cx) and X=x(a) solve (2.2), 

(2.3), then 

(2.4) c(a) = c 0 + cp + c a2 + . . . 
.., I\, 

' i :'. 
2 

(2.5) -. .- X(&) ; i: + x ;'+,/&+' _I " : 
0 1 2 *** 

We will solve for ci, Xi up to i=2. 

For i= 0, equations (2.2) and (2.3) become 

(2.6) 0 = +-+ hOmg 
C > 

- [l + Xt & (T- DO)]cO 

I;‘.’ ,” L ;.“j :,I i ::!i:, , : >1, : 

;. :..L 
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- 

. 

(2.7) 

Hence, 

(2.8) 

:,‘i 
(2.9) 

0 = AO(Lc,+T) 
', 

we have 

co = vc 

' + 'E mg 1 (T-Do) 

For i='l, equations (2.2) and (2.3) become 

(2’.1t$’ ‘:b = +g - [l + Xt $ (T- DD)]c, 

(2.11) 0 = -xt & (T + 2rjL,) + Xl(La+T) 

Hence, we have 

(2.32) 
XE $ (T+ 20L,) 

Xl?:- g 
(L,x'T, 

c:. 

(2.13) -’ 
XtV(T+ 2nL,) 

Cl = ,2 
(i,+T)(l+ X* E $j (T-Do)) 

for i = 2, equations (2.2) and (2.3) become 

(2.14) 0 = X2mg - [l + Af f (T -.D0)k2 : [-If f ($ + llLa).:t X1(ca+T)$$ 

(2.15) 0 7 X2(L,+T) 

Hence, we have 

_' 

I 

(2.16) X2 = 0 

Equation (2.14) becomes after substituting X1 from (2.12) 
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(2.17) 0 = [l + x* E f (T- D0)]c2 + [At 6 (; +nLc,)]co ' ,,' '1." 1 ~ 

Hence, we have . ., ,' :. '. 

nLcl) 
(2.18) c2 = 

(1 + XE $ (T- Do))2 

‘A : i ,i 

.I . . 

.The preceding perturbation series for y(a) is used to solve for c1 from (2.1) ,z 

as follows. Substitution of (2.4) in (2.1) gives 

(2.19) 0 = LUa + T sina - mg(co+c1a+c2a2)- 
:. 

To be consistent, we should expand since to second order in (2.19),and solve - 

(2.20) 0 = Lc(~ t Ta - , j 

We could solve (2.2) directly by quadratic formula. Instead we will expand 9 in 
:, 

a perturbation series with respect to the parameter 
: 

: :. .- ._ . . .j, ) 
., ,z.‘ >, -. . _’ 

;I 

Thus, (2.20) becomes 

(2.22 

where 

(2.23) a = a0 + ml + ~~~~ + . . . 

For i= 0, (2.22) becomes 

\ : 

,:,: c : ‘. ;.:: 
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which,gives ai directly. : 
.For i= 1, (2;22) becomes : 

which gives.al -as : ‘.- :. 
: 

.. 

(2.26) a1 = co, ... 

r.3 
For i= 2, (2.22) becomes . 

(2.27) 0 = a2 - (c1"1) 

which gives 

(2.28) a2 =‘clco 

Thus, to second order in a we obtain 

: .‘. 

, 

(2.29) Fr = ‘c& t cjcg 

In terms of the aerodynamic coefficients (2.29) gives a as 

+ mg 
(2.30) c a N 

f- (md2Atv(T + hL,J , 

Cl + q.g " (T - D$,[L,+T1+ [l'+ XE & (T - D,)32cLa + T13 

To obtain y we may solve (2.1) directly for y, using ,tk Or from (2.30) or we 
may use the series expansion for cosy in (2.4),and solve for y from:that.-:. Ig- 
noring terms'with O(c3) dependence would give 

. ._ -. 

(2.31) y.= cos-' 

.  .  

where-:a in (2.31) is given by (2.30). . .' 

Note that at this level there is no reason to work with y rather than.cosy, 
-1 and one..may'as. well avoid cos . i 
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The two things we need from the h-boundary layer are y* (or cosy*) and 
We have obtained the former in (2.31). We- now obtain AC. The idjoint xfi.is 

1;. 

such that 
I . . . . . . '. : .;. 

(2.:3?.)., 0 ,f 1 i ,&.cosY*.+ Xp f (T.cosa* - Do -. nLa(a*)2) + Aj3;V siny+ 

(respectively equation (5.6.9)). I 

By rewriting equation (2.2) we obtain 
I 

t&33) (1 - +.cosy + x 
c Eiij(T cosa - Do - a2da)jcosy 

= (1-cos2y)(+- 
C 

+ Amg) + X(mg cOSy - Las - T sina)cosy 

Using equation (2.1) we can simplify (2.33) to obtain 

(2.34) {l +cos, + x& 
C 

(T cosa - Do - a2nLa)}cosy = sin2y(+ + Amgj 
C 

comparing (2.34) to (2.32) we see that X and Xi are related as follows: 

(2.35) h; = - v (+ + X*mg) 

C 

where A* is obtained from (2.6) with a* substituted from (2.30). Note that A* 
is given as 

(2.36) X* = Ala* 

and from (2.12) we have 

v 
(2.37) A* = 

A: mg (T + 3-iLa) a* 

La + T 

and hence Xc is given by 
. ,'I ; : ,' ) 
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(2.;&) ” A; = _ v + + XE’J(T -J- 206~) a* 

> 

, 

:-:. ‘, ,.c ! (La ,+ T).: 

Thus, we may use either (2.38) or (2.32) directly to obtain. X; from yf and a*. 

The direct computation .of, Xi: ,from (2.32) mai be more accurate but (2.38) seems 

to give a better idea of how X;1' behaves in terms of V, y*, a*. Note that then 

only error in (2.38) comes from the approximation of X*, and this approximation ': 

has an error of O([a*]3). : 

Constraints. The next possibility to check 'is whether or not a or y takes 

a value on a constraint. To denote possible constraints, define y, as the posi- 

tive solution y of 

(2.39) 0 = Lass + T sinas - mg cosy 

if such a solution exists, i.e., if we have 

L,as + T sinas 
(2.40) mg 5 1 

Likewise, define a, as' the solution a of 

(2.41) 0 = Las + T sina - mg 

Analysis of the original optimization problem, to minimize (for y>O) the 

function 

1 - + cosy f x* Jf- E mg (T cosa - Do - nLaa2) 

(2.42) C 

V siny 

(respectively, equation (5.6.4)), subject to the constraints 

(2.43) o<y<Tr 

(2.44) 0 I a 5 as 

1 and (2.1), shows that as y-to, the function in (2.42) tends to +a, as -. 
Y 

Hence, 
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we must have 

(2.45) a<a m 

where a, is defined by (2.40) above. Note, that am< ai or amz:us may occur. 

Thus, the only constrained values of (a,y) are due to the constraints on a 
in (2.44). 

If ascam, then we check the possibility of 

1 - + cosy, 

(2.46) -A; = ' 
+ 'E mg -!!- (T cosas - Do - nLaas2) 

- 
V siny, 

being optimal. Likewise, we must check the possibility of 

(2.47) -A; = 
1 + hi " (T- Do) 

V 

being optimal (the a=O, y= 1~/2 solution). 

The optimality test for these constraints simply involves comparing Xi and 

AE to ht for the unconstrained problem; The comparison goes as follows: 

Case. 1. a*50 or asSa*, either # or hi is optimal. The optimal case corres- 

ponds to the larger or the two (remember -Xi or -$ is minimum). 

Case 2. O<a*<as, either Xi, Xg or Xi is optimal. The optimal case corres- 

ponds to the largest of the three. 

h-Boundary Layer Algorithm 

1. Calculate a, from (2.41). 

2. Calculate a* from (2.30) (second order approximation) 

order approximation 

+- w 
(2.48) a* = C 

Cl + A; $ (T - Do)lI:La+Tl 

or from the first 

or, if you prefer, by solving the nonlinear equation 
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(2.49) 0 = Lao- + T sina - C 

1 .t Xt $ (T- Do) 

by a Newton-Raphson method. 

3. If cxm'Us, then go to 6. 

4. If a*<0 or as<cl* go to 7. 

5. Calculate A:, Ah*, Ai: the largest corresponds to the optimal solution, 

A 0 
h + a =o, y=n/z 

x* -f a", y* h 

AS h + as' Y, 

Go to 8. 

6. Calculate a*, if u*<O then XII is optimal and a= 0, y=s/Z. If cc*>0 then 

calculate Ai, Xt and choose the larger--this gives the optimal. 

Go to 8. 

7. Calculate A:, A:. The larger corresponds to the optimal solution. Go to 8. 

8. If h<h(E), keep y>O as it is (y=ys, n/Z or y*). If h>h(E), take -y 

instead. 

STOP 

229 



This appendi, presents .3 IliLlhei :)i 8;c; ~J~Jx o:.imation of the r-boundary layer 

calculation given in Section 'i.:. 'ilre I!!-lncipal improvement is to use a Taylor 

series expansion to determine '.hc port~lI-!~;~tior of the anqle-of-attack from the 

value which maintains a steady flinhf pa+,11 7nnle. Gy calculating &a, the per- 

turbation of the anqle-of-attack 1. f:~i;l,l its steady state value ~(0 instead of 

calculating the anqle-of-attack '~( dirwtlv. v,e will obtain better numerical 

behavior of the SOllJtiOn. 

To define the problew more prec is? 1,~). we ;m!ust, [make some preliminary defi- 

nitions. Let L(X) be the function of tile anule-of-attack o defined by 

(3.1) L(ci) = 1 - + cosj' + :;i ,yC, (~J chick - DO- ~IL,cx~) f ?$V sinY 
c 

and let f(sl) be the f(rnction of ti de:‘irI+ hy 

Note that the function, L ,>nd f al%i:a dr$erld or the flight path angle y. The 

optimization problem is to i!8illi%t ~:e rlw rit~1~3 L/f if '; " ;"(E.h) and to maximize 

this ratio if \, i*(t.tl). lill!,~ ':~: :ii ,!+:i,ws the pseudocontrol value of y 

calculated in the h-hounder,! la:j'et' [,.I 1.1e lwit\ivlization we are to restrict 

values of ci such that f(c) il; liIe:!++, it, tne maximization we are to restrict 

c( so that f(u)-:O. In ;iddit.ic>l.i ltl-b,e C~rf' inequality constraints on LI., namely 

(3.3) 0 < 'L ': I( 

Let us define the steady state V~;IIKJ cl! d:. the value of '.I, denoted (1‘ 0' which 

solves the equation 

(3.4) 0 = f(..O) 

That is, <KG is t.tle ,~~~~J~P-~~I~~;I+?.~: 1 :: ,i, t,-:'rs4vli~lc in steady state. Note that 
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a0 depends on y (as well as E and h through the aerodynamic coefficients L, and 

T). As pointed out in Appendix 4.2 on the existence OF solutions to boundary 

layer calculations, a solution to the optimization problem will exist in this 

case with c(>aO fory<y* and CL<CI~ for y>y*. The former case corresponds to 

f(a)>0 and the latter case corresponds to f(a)<O. Thus, in either the minimi- 

zation or the maximization it wiil be necessary for Q to be found in the interval 

clO<o~os (for the minimization) or in the interval O<rr<aO (for the maximiza- 

tion). In each case, the optimal CL is either an unconstrained value or it is os 

(in the case of the minimization) or 0 (in the case of the maximization). 

As we pointed out in Section 5.7, when E< EC and y>y* the optimal a is 0; 

similarly, when E> EC and y<*(* the optimal a is os. Thus, we will consider only 

the other two cases when E> EC and y:y* or when E<Ec and y<y*. To determine 

the optimal OL in these cases we set the derivative of L(a)/f(rr) equal to 0 in 

order to determine the unconstrained values of o. and then compare these values 

to the corresponding constrained values of 01. Setting the derivative of L(cr)/f(cr) 

equal to 0 gives the equation 

(3.5) f(a)L'(u) - f'(w)L(u) = 0 

To obtain an approximate expression for the solution c~u (unconstrained LX) of 

(3.5) we expand L(a) and f(a) in a Taylor series around oo. Thus, we obtain 

(3.6) L(o) = L(ao) + L'(cco)BU + $L8L"(ao)(&Y.2) 

and 

(3.7) f(o) = f'(lYO)6C( + sf"(o,)(& 

Note that we have neglected terms higher than second order. Substituting (3.6) 

and (3.7) into (3.5) and collecting terms gives the following quadratic equation 

for CL. 

(3.8) f'(uo)L(no) f f"(ao)L(Q( I 6a + 4(f"(uo)L'(ffo) - f'(U,)L"(UO))(& = cl 

The solution of this equation is given by the quadratic formula 

231 



(3.9) Isa = 

-fn(ao)L(ao) 2 {(f"(~o)L(~o~~*-2f'(ao~L(n~~(f"(ao~L~(ao~-f'(~o~L"(~Ol~l 

{f"(ao)L'(ao) - f'(ao)L"(eo)l 

To determine which root to choose we must calculate the derivatives of f and L 

from the original expressions (3.1) and (3.2) for f and L. Thus, we obtain 

(3.10) L(ao) = 1 - +- cosy + A' J- 
C 

E mg (T cosao- DO-nLaao2) + At!/ siny 

(3.11) L'(co) = -A; -& (T sina f 2nLaao) 

(3.12) L"(ao) = -1: +g (T cosaO + 2nLo) 

(3.13) f'(a,) = La + T cosaO 

(3.14) f"(ao) = -T sina 

Substitution of (3.10)-(3.14) into (3.9) gives us 

(3.15) 6a = - I!= _+ 
2(Le+T cosao) 

K 0 TL K 

where K is given by 

(3.16) K=- + 2nLaT(aosincro + cosao) = LeT cosaO + La22n) 

and L is L(ao). Note that K has the opposite sign of ht. Also note that L, T, 

L aI n, cosao, sina are all positive. Knowledge of the signs of these quantities 

will enable us to determine which root to take in (3.15). 

Suppose that EC EC and y<y*. In this case we must have 6a>O, Since 

E<Ec> the adjoint hf is negative and thus the coefficient K is positive. Thus, 

in this case the unconstrained value for Er is given by 

(3.17) Aa = _ TL 
K 0 

+ sin*a 0 - 2(La+ T cosao$ 
> 
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On the other hand, if E> Ec and y>y*, then we must have ba<O. Moreover, the 

co,e,fficient K is negative in this case. Unfortunately, this means that both 

roots of (3.15) are negative and we cannot immediately distinguish which is the 

correct root. Moreover, for K negative it is possible to obtain complex roots 

in (3.15) and we must be able to handle this case adequately to obtain a real 

value for &x. What follows is an algorithm for calculating 6a in the various 

cases of E and y. ' 

y-Boundary Layer Calculation: Algorithm * 
/ 
i 

1. 

2. 
3. 
4. 
5. 
6. 

7. 
8. 

If E< EC 'and yiy*, let CX= 0 and stop. 

If EzEc and y<y*, let o=as and stop. 

If E<E, and y<y*, calculate Ba from (3.17) and go to step 5. 

If E>Ec and y>y*, calculate both roots from (3.15) and go to step 6: 

If “oax>as, let CX=CX~ and stop; otherwise, go to step 7. 

Replace complex roots by real part. If CXU+& < 0 (for both roots), let 

a= 0 and stop. Otherwise discard any root such that CX~+ &x<O and go to 

step 8. 

Let aU=ao + &x. Choose CX=CX~,~~ whichever minimizes L(a)/f(a). Stop. 

Let au = CX~+ 6a (both roots for SCX). Choose cl=c"u or CX= 0 whichever maxi- 

mizes L(ol)/f(ol). Stop. 
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CHAPTER 6 

REAL-TIME SPT CONTROL LAW 

This chapter describes the real-time SPT control law as it has been im- 

plemented and tested on the CDC 6400 computer. Section 6.1 contains a descrfp- 

tion of the control logic for different parts of the flight, namely before the 

cruise arc (Case I), on the cruise arc (Case II), and after the cruise arc 

(Case 1’11). An estimate of the total computations required is also given. The 

exact computer time for each cycle of the control computation will depend on 

the characteristics of the flight computer. This in turn will determine the 

control update rate, which can vary for different control loops. In general, 

the computation rate for the faster layers must be kept higher than that for the 

slower layers in accordance with the SPT approximation. Fortunately, the com- 

putations involved at faster layers are less than those at slower layers so that 

the SPT algorithms of Chapter 5 are easily implemented to satisfy this require- 

ment. 

Other sections of Chapter 6 contain results of using the real-time control 

algorithm for an F-4 aircraft. The results are very encourgging both in terms 

of accuracy and computation time. 

6.1 Description of Real-Time Control Logic 

The purpose of real-time control logic is to compensate for changes in 

target relative position, velocity and heading. A change in target velocity 

produces a change in the intercept point, namely, tf, x(t,) and y(tf). If the 

pursuer's position is on or before the cruise arc, this requires a change in 

cruise heading B, and time t, for coming off the cruise arc. It is convenient. 

to separate the control logic into three parts depending on the position of the 

pursuing aircraft relative to the target. 

6.1.1 Case I: Before the Cruise Arc 

If the pursuer is on the energy climb path to the cruise arc and B, is 

changed, a change is required in B before the cruise arc, For small B-changes, 

a linear control law relating o to (E,B) can be used. This may produce small .,. 
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changes in (E,h,y) which again can be compensated by linear feedback law. The 

aircraft state would return to the energy climb path after the required correc- 

tion in B has been made. 

If the change in B is large, Parsons' (1972) energy state solution suggests 

the use of nonlinear control law. This requires,zoom climb or di,ve to, the max- 

turn-rate (MTR) locus, heading change through the appropriate amount and.zoom 

dive or climb to the min-time energy (MTE) climb path. Boundary layer control 

calculations for h and y are required to complete the zoom maneuvers. The 

latter are basically vertical plane maneuvers at constant thrust, requiring ca.l-‘ 

culation of c1 to complete the zooms. However, simulation results for the F-4 

have shown that it is better to turn at current energy without zooms since, the 

zoom dynamics is quite slow (see Tables 6.2.1, 6.2.2 and 6.2.3). 

6.1.2 Case II: On the Cruise Arc 

Control law similar to Case I is used here except that it is much simpler 

in form since the linearized system is time invariant and the optimal cruise 

energy is constant. Thus, constant feedback law is appropriate for small changes 

in B,, h and y. 

6.1.3 Case III: After the Cruise Arc 

The terminal part of this case involves short range optimization problem 

which is beyond the scope of the present study since SPT is not valid for this 

case. However, for small changes in terminal conditions, a linearized solution 

is appropriate and this would take the same form as the linear solution in Case I. 

6.1.4 Feedback Structure of the On-Line SPT Algorithm -- 
Figure 6.1.1 shows a schematic of the on-line SPT algorithm. From a feed- 

back control viewpoint, it is a hierarchical structure with six loops. The 

fastest loop, i.e., y-loop, is at the bottom of the hierarchy and it requires 

inputs from all the higher loops. Since the higher loops operate at slower : 

speeds, these inputs to the y-loop are updated at different rates which are much 

less than the speed of the y-loop. The command y* is provided by the h-loop 

and the nonlinear SPT control law computes a to follow y*. If the error .Iy-y*l 

is small, a linear feedback control law involving both h and y is used to take 

into account the interaction between the two loops. > 
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Hierarchical Feedback Structure of the On-line SPT Algorithm 
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The sampling times and the control update rates of the different loops in- 

crease as one goes down the hierarchy. This causes no problem for the SPT al- 

gorithm since the optimization problem at lower levels is simpler than the opti- 

mization problem at higher levels. In Figure 6.1.1, Case # corresponds to 

Cases I, II and III. The notation c$ denotes the optimal value of ~1 in the h- 

boundary layer, which is the asymptotic value for a in the y-boundary layer. 

Thus the calculations of 01 at higher levels serve as checks on the calculation 

of cx at lower levels and may be used to shorten the duration of the boundary 

layers. 

6.1. 5 Real-Time Capability Assessment --- - 
In this section, we provide execution 

different control loops of Figure 6.1.1 on 

time and storage estimates for the 

a Texas Instruments 9900 microcomputer. 

TI9900 has a memory of 32K, 16 bit words and basic instruction execution times 

in microseconds are given in Table 6.1.1. The CPU times per iteration, nominal 

number iterations and storage requirements for control loops of Figure 6.1.1 

are given in Table 6.1.2. The y-loop, for example, takes 1.5 msec of CPU time 

per iteration for a control a update and, therefore, can be iterated up to six 

times for 9 msec if the measurement sampling interval for y is, say 10 msec. 

Slower sampling rates for y state would allow time for more iterations of the 

control loop. The control update rate for the complete on-line calculation 

would be determined by the radar measurement rate. Assuming 10 samples per sec- 

ond, a total of 100 msec are available for control computation. If the CPU time 

is allocated equally between all the five loops, 20 msec of computation will be 

available for each control loop. This implies that two iterations of the y-loop 

calculations can be performed 6 times during 20 msec so that a sampling rate as 

high as 250/set can be used for y. It is clear from these figures and the num- 

bers in Table 6.1.2 that the proposed algorithm can be easily implemented on- 

line using a TI9900 microcomputer. 

The estimate of 27 msec for a complete control calculation of all the loops 

including linear feedback control implies that radar measurement rates of as 

high as 30 samples/second can be used. This would allow interception of highly 

maneuverable targets. On the other hand, if lower radar measurement rates are 

used, CPU time is available for further refinement of the SPT controls. In 
particular, the implementation of one or two iterations of the "continuation 
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Table 6.1.1 
Execution Times for TI9900 

Instruction 

Branch 

Register to register 

Add (words/bytes) 

Register to register 

Indirect to indexed 

Multiply 

Register to register 

Divide 

Register to register 

Shift (left/right) 

1 bit 

8 bits 

Move data (words/bytes) 

Register to register 

Register to directory/index 

Load communications register unit 
(register to CRU) 

8 bits 

16 bits 

Store CRU (CRU to register) 

8 bits 

16 bits 

Execution time 
(microseconds) 

(Clock rate is 3 MHz) 

2.67 

4.67 

8.67 

17.33 

41.33 

4.67 

9.33 

4.67 

7.33 

12 

17.33 

14.67 

20 
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Table 6.1.2 

TI9900 CPU and Storage Requirements for 
the Real-Time SPT Algorithm 

Number of CPU/ 
average iteration 
iterations 3 (msec) 
required 

tf - calculation. 4 2 

4 - calculation 4 1 

E - BL 4 1 

Linear feedback around x-y 

solution (u,o,cl controls) 1 0.5 

Linear feedback around 
E-BL (o,c1 controls) 1 0.5 

B - BL .2 2 

Linear feedback around 
B-BL (o,c1 controls) 1 0.5 

h - BL 4 0.5 

y - BL 2 1.5 

Linear feedback for 
h and y (cx controls) 1 0.5 

Estimated storage for 
software , 4000 

TOTAL 27 6150 

BL rz boundary layer 

Average 
cycle time 
(msec) 

8 

4 
4 

0.5 

0.5 

4 

0.5 

2 

3 

0.5 
-- 

Storage 
(words) 

400 
400 
210 

20 

100 

500 

100 

10 

10 

400 

2150 

Typical sampling interval for radar returns = 100 msec 
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algorithms" discussed in Chapter 3 seems feasible within a total CPU time of 

100 msec. Table 6.1.2 also shows that the storage requirements,are well within 

the 32K limit of the TI9900. 

6.2 Simulation Results 

In this section and the next, we describe simulation results obtained using 

the real-time SPT control algorithm. First a more detailed description of the 

actual algorithm is given since certain%nor but important modifications to the 

SPT control law were required. 

6.2.1 Climb to Cruise Arc 

The optimal flight path to the cruise arc is obtained by retrieving from 

storage V*(E) which provides the necessary information to construct the E boun- 

dary layer. h and y boundary layers are then added onto the E-layer solution. 

6.2.1.1 E-Boundary Layer Calculations 

As mentioned in Subsection 5.3.2, the necessary quantities for the E boun- 

dary layer control problem are V*(E), h*(E), a*(E), u*(E) and X*(E). Having 

determined V*(E), however, the remaining quantities are directly determined from 

E and V*(E). 

V*(E) was determined off-line for a fine grid (1 point/61 m) of values of 

E, and a:piecewise linear approximation was then applied. For E< EC, V*(E) was 

determined by maximizing (5.3.10) subject to (5.3.11). The maximization was 

performed by exhaustive search on a grid (1 pt/(12.2 m/set)). For E> EC, V*(E) 

was determined by minimizing (5.3.10) subject to (5.3.11). again by exhaustive 

search. For E>Ec, it was found that V=Vc= 590.2 ms -1 was optimal. 

Figure 6.2.1 shows the piecewise linear approximation for V*{E). The approxi- 

mation was chosen such that its divergence from V*(E) was always less than 

6.1 m/set. We note that there is a jump from 585.2 to 590.2 ms -1 at E=E,. 

Figure 6.2.2 contains a flowchart which represents the E boundary layer 

control program. This flowchart may be regarded as a detailed version of Fig- 

ure 5.3.1. 

We note that in the last block of the flowchart the quantity g is computed. 

This is the implementation of (5-.3.1) with c1=c1*, V=V* and uT,,,=T. This 

calculation will not be required on board the aircraft since E would be measured 
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or estimated from sensors. 

A simulation of the aircraft trajectory has been run using the controls 

calculated for the E-boundary layer. The simulation consisted of a predictor- 

corrector (Adams-Bashforth, second order) solution to equation (5.3-l), with 

01= c1* and uTmax determined by the control algorithm at each step. The stepsize 

was fixed at .5 seconds, and the simulation was run past the point where the 

aircraft reached the cruise energy-height. The initial energy-height was 5482.7 m. 

Figures 6.2.3- 6.2.9 show the computed time histories of energy-height, 

altitude, velocity, Mach number, thrust, range and c1 respectively for the E- 

boundary layer trajectory of the aircraft. 

The aircraft, with these boundary conditions, reaches cruise energy after 

359 seconds. This is slightly slower than the 351 seconds taken by'aircraft 

with the same boundary conditions (zoom changes in height and velocity are assumed 

instantaneous) in the energy state approximation of Section 6.3. This dis- 

crepancy is due to the cruise approximation of V*(E) by five piecewise linear 

functions. 

Figures 6.2.3, 6.2.4, 6.2.7 and 6.2.9 show some chattering behavior on the 

cruise arc. This corresponds to oscillation around the cruise arc which can be 

eliminated by adding some anticipatory action as the cruise energy is approached 

or by switching to a linear multivariable control law in E, h and .y. 

Aside from the slight differences ;n time--unti&cruise. Figures 6.3.1 and 

6.2.3 show energy-height time histories wtGct1 dre yuiI,e similar. The time his- 

tories of altitude, velocity, Mach number arid I-atlcJe are also quite similar for 

the two algorithms, except at the beginninq, bjherc the rcai-time E-B solution 

requires a zoom-dive to the MTR locus. The thrust histories are slightly dif- 

ferent, being smoother for the present (E-boundary layer) case. Angle-of-attack 

(~1) appear to differ between the two solutions, but the effect of cx is small. 

We have also included in Figures 6.2.10-6.2.12 profiles of altitude versus 

Mach number, altitude versus range, and Mach number versus range. These are 

also similar to the corresponding plots for the energy state trajectories (Fig- 

ures 6.3.12-6.3.14). The controls were computed in a closed loop fashion, and 

the control computation to real-time ratio was found to be approximately 1:30. 

6.2.1.2 h-Boundary Layer Computations -.- --_ .--_-- 
In order to obtain the pseudocontrol y* and the control r~* in the h-boundary 

layer, we have implemented the successive approximation scheme suggested in 

243 



Subsection 5.6.1. Specifically, we have performed the following iteration: 

(2.1) a() = 0 

(2.2) yi = cos-l 
1 + At & (T- Do-nLa&) 

) I .' i = 1,lO 
(2.3) a; = p$ 

cx 

(2.4) cxi = a; - 
Lacx; + T sincli - mg cosyi 

La + T cosa; 
J 

We take y*=y10 and a*=~,~~. Equation (2.2) is a complete form of (5.6.8), while 

(2.3) and (2.4) consist of a Newton iteration to solve for o! in (5.6.2). If 

h> h*(E) we negate y* in order to achieve a dive. 

Figure 6.2.13 shows a plot if h*(E) versus E. This was obtained from the 

E boundary layer simulation of this subsection. We have also plotted, in Fig- 

ure 6.2.14, y* as a function of h-h*(E) at two energy levels: E=5482.7 m and 

E= 13258.9 m. Figures 6.2.13 and 6.2.14 represent the feedback control laws for 

the E and y boundary layers, respectively. 

6.2.1.3 Addition of a Predictive Feedback Term 

It was found that the system behaved better numerically when the nonlinear 

feedback terms described above were supplemented by a predictive term Kh(h*- h). 

The control law is tany*=tanylO+Kh(h*- h) and 01* satisfies (5.6.2). Addition 

of this predictive term has the same effect as imposing a penalty cost in addi- 

tion to the other cost criteria to penalize h when it is far from the "optimal" 

value of h computed as a control in the E-layer. Best system performance was 

obtained with Kh = 0.005. 

6.2.1.4 y-Boundary Layer Computations 

To obtain cx* for the y-boundary layer which is the lowest level of the hier- 

archical feedback structure, we added a predictive feedback term of the type 

Ka(y*-y) subject to saturation limits of 0" and 12". The use of SPT control 

together with predictive feedback terms stabilizes the control scheme and 
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'alleviates inaccuracy due to numerical error in the control computation. Best 

performance was obtained for Koc'0.6/cosa (c= 76" while turning). 

6.2.1.5 The Initial Turn ,' 

In Section 5.5 where the energy-state solution was obtained, transitions 

in altitude and velocity were instantaneous at constant energy by the very nature 

of the approximation. Hence it was cost-effective to zoom to the max-turn locus, 

complete the turn on the locus and zoom back to the optimal ene.rgy climb path. 

With h and y dynamics taken into account it is no longer clear whether this is 

the optimum strategy. Hence, a simulation of the aircraft trajectory was run 

using the controls calculated for the y-layer and two turning strategies were 

implemented and compared: (a) turn on max-turn locus and (b) turn at initial 

states. Table 6.2.1 presents these results together with simulation results for 

the flight path recommended by flight manuals. Also included in this table are 

the results of control laws using different gains for the predictive feedback 

terms, as well as the energy state solution. The results in the table indicate 

that the total time to the cruise arc is fairly insensitive to variations in 

these gains (HGAIN,YGAIN ). The energy-state approximation assumes instantaneous 

maneuverability in h and y states and therefore provides a lower bound to the 

optimal solution. The best control strategy was found to be (b) above (Case 9 

in Table 6.2.1) and was only 4% above this lower bound while current practice 

(Case 10) was 21% above the lower bound and 17% above the best SPT solution (b). 

The strategy (a) (Case 8) which involves a climb to the max-turn locus for turning 

was 9% greater than (b). Hence although turning is faster on the locus (2.2 set 

less), the initial distance from the locus (about 3000 m altitude here) makes 

(a) less efficient than (b). 

. Figures 6.2.15, 6.2.16, 6.2.17, 6.2.18 and 6.2.19 give a view of the first 

20 seconds of the trajectory ((b) above), 10 seconds of which were taken up in 

turning. The complete climb to cruise arc is shown in Figures 6.2.20- 6.2.30 

with the E-layer and h-layer trajectories included wherever they provide a good 

comparison with the y-layer to indicate the purpose of adding boundary layers. 

In particular, Figure 6.2.21 shows the zoom dive in altitude (h*) demanded by 

the E-layerand the well-rounded descent in altitude achieved by the y-layer. 

Figure 6.2.30, which is an altitude-Mach profile of the trajectory, includes in 

addition to the E-reduced order solution, the current practice trajectory which 
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is recommended byflight manuals. 

6.2.2 ..Cruise Arc 

Upon reaching the end of the energy-climb path of Section 6,.2.1, some minor 

adjustments in altitude, velocity and ,fT,ight path a.ngle are necessary to attain 

the aruise values specified In Subsection 5.2.1. As mentioned in Subsection 

6.2.1.1, there is a jump in velocity from 5B5.2 to 590.2 m/set at E= EC. In ..’ 
the example simulation, y is slightly ,positive ‘(4:4") upon reaching EC and 

therefore must be reduced to 0". In order to achieve cruise values for all the 

states simultaneously, a backward integration was performed beginning at cruise 

v,alues maintaining i= 0 and c1 as large as possible so as to increase y: these 

controls are u=l and ~1 for i= 0. In the real-time case, this integration could 

be done off-line and stored as a velocity-flight path angle profile. Forward 

in,tegra,tion was begun with the nominal cruise values (V= 585.2 m/set, y= 4.4", 

etc.) using CX= 0 to decrease y and u for i=O and the states monitored to de- 

termine the intersection point with the backward trajectory to yield the optimum 

switching p,oint. At this, point the backward simulation controls are implemented: 

u= 1 and a‘for ,!= 0 to arrive at the exact cruise values. In the examp1.e simu- 

lation, it took 17.2 sets to achieve these exact values.' The same-range could 

have been covered in 17.0 sets at V= 590.2 m/set and y= O", hence the cost of 

these corrections is very small, i.e., 0.2 sets. 

6.2.3 Descent from Cruise Arc to the Terminal Aircraft States 

This portion of the trajectory is a short range (30-40 Km) optimization 

problem. It has been shown in Section 4.4 that the SPT approximation breaks 

down as the terminal states are approached. We therefore look to the energy- 

state approximation of Section 5.5 to provide clues as to the optimum path to ' 

the interception point. This approximation neglects h and q dynamics and so 

allows free (instantaneous) zoom dives and climbs. Hence, we find that the 

energy-state reduced order solution requires descent from the cruise arc along 

the max-velocity constraint until the final energy is reached after which there 

is a zoom climb (constant energy) to the required terminal altitude. In contrast 

to this solution we also have what is recommended in operations manuals for 

current supersonic aircraft: descent from the cruise arc along the max-velocity 

constraint until the final altitude is reached after which level (constant 
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altitude) flight is suggested to the required final energy (or velocity). 

Simulation of the trajectory along the max-velocity constraint was achieved 

by obtaining the two controls: alpha (~1) and throttle (u) so as to satisfy 

(2.5) t = VAax(E)i 

where Vmax(E) is as in Figure A5.1.2 and V,!,,ax(E) is the derivative of V,,, with 

8. respect to E. 

> We now consider a simulation of the zoom climb at constant energy from the 
,' max-velocity constraint to the final altitude as required'by the energy-state 
5 

reduced order solution. A period of pull-out from descent on the max-velocity 

constraint to ascent on the constant energy (Ef) contour,is necessary. Basically 

this involves changing the flight path angle from negati,ve to positive as quickly 

as possible. Since at the final altitude, yf=Oo, a swjtching strategy exists 

so that on the Ef contour, a maximum y is just reached after which the controls 

XC switched so as to decrease y as fast as pcjssible (ti= O") to satisfy the ter- 

minal constraint on y. There is also an optimum energy at which to begin pulling 

out of the Vmax descent so as to arrive onto the Ef contour with a nonnegative 

flight path angle. 

With a=0 on the energy contour (Ef), it can be,easily shown that 

(2.6) h = -Ef tan2y + hf sec2y 

Hence, the switching height hSW is given by 

(2.7) hSW = -Ef tan2-rmax + hf sec2ymax 

Hence hSW is the altitude corresponding to ym,,; therefore a comparison 

of current altitude (h) to hSW indicates whether,:y,,, has been reached. When 

h= hSW, a must be set to zero so as to just bring y to zero at hf. The real- 

time algorithm is outlined below: 

(i) descend on Vmax constraint until pul'l-out energy'with OL and u from 

(2.5) 
(ii) pull-out with cl=as, u=l until E= Ef 

(iii) maintain t?= 0 and allow y to increase until y=y,,, determined by 
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testing current altitude against hSW 

(iv) set CX=: 0 and u to maintain i= 0 so that hf .is attained at constant 

. energy (Ef) with y= 0 at hf 

(v) complete final turn dith h=O, G= 0, i= 0 maximizi.ng i. 

Example simulations were conducted using the abo.ve.algorithm to descend ,.I 7: 

from cruise to the final states. Two examples were ,implemented: 

(1) Ef=1.2802x104 m, hf=9.144x103 m, yf=Oo, Bf=900, Mf=0.89 

(2) Ef=1.0668x104 m, hf=9.144x103 m, yf=Oo, Bf=900,,Mf=0.56 

Note that horizontal.plane constraints (i.e., xf, y,) are satisfied by choosing 

the corredt cruise heading (B,) and range on cruise (R,). The results for (1) 
are presented in Table 6.2.2 which also contains the energy-state reduced order 

solution and an implementation of current practice. The effect.of earlier pull- 

out from descent on the Vmax constraint is shown by the superiority of Case 4 

over Case 3 in Table 6.2.2. Note that as before the energy-state approximation 

solution provides a lower bound to the optimal solution since instantaneous 

maneuverability is assumed in the h and y states. The best real-time solution 

(Case 4) was 24% above this lower bound while current practice was 28% above 

the lower bound and about 4% above Case 4. 

The closeness of the result of Case 2 (current practice) to the best real- 

time solution (Case 4) motivated the simulation of example (2) above, the results 

of which appear in Table 6.2.3. Again the energy-state reduced order and current 

practice solutions are included. Here the best real-time solution (Case 4) is 

about 19% above the lower bound while current practice (Case 2) is 65% above 

the lower bound and about 38% above the best real-time solution. Hence taking 

the results of (1) and'(2) together, current practice is almost as good as our 

best real-time solution in (1) where the final Mach number is high (Mf=0.89) 

while in example (2) current practice is considerably less satisfactory than the 

best real-time solution. In (2) the final Mach number required is lower (Mf=0.56) 

and we see that level flight throughlower Mach number regions is time-consuming. 

Hence the optimum strategy for descent from the cruise arc is dependent upon 

the particular final states required of the airplane. 

The whole trajectory of example (2) above, i.e., Case 4 of Table 6.2.3, 

is displayed in Figures 6.2.31- 6.2.43, of which Figures 6.2.39.-6.2.41 represent 

the'three control (~1, u, a) time-histories. We have added-in .the E reduced-order 
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solution and current practice wherever the comparisons are meaningful. Note 
that for the purpose of comparing the different cases in Table 6.2.3 a common 

range. (68.86 Km) had to be considered so Case 4 includes extra range on cruise. 

With the exception of Figures 6.2.32, 6.2.42 and 6.2.43, this extra range is not 

shown in the figures. Common range considerations were also made in Tables 6.2.1 

and 6.2.2 with extra range added onto cruise wherever necessary. : 

6.3 Numerical Results-,Using a Real-Time Algorithm Based.on.the Energy State A..r~~~~a~~-o~--. "F-- , _ _- .~ ._^_ -._ i -.... -.l.l ̂ _- -.-. - -..-.--.- " .r --,.,._._ _"__ 
PP 

A real.-time trajectory was obtained using the algorithm described in Sub- 

section 5.5:2 with turning only on the max-turn locus. Initial and final con- 

ditions chosen were: 

ho = 3.353~10~ m hf = 8.230x lo3 m 
, , 

!: 

! MO,; 0.6 
.. ~. 

I 'E. p.5.517~ lo3 m Ef = 1.158~10~ m ? 

'. 
.x0 .= 0 Xf = 212.0 Km I 

YO =0 yf = 169.6 Km 

BO = 30" Bf = 120" 

Figure 6.3.1 gives the energy changes with time along the trajectory. 

Roughly two thirds of the trajectory consists of reaching the cruise arc while. 

the.section from the cruise to the final conditions is by comparison much 

shorter: the rate of energy change being higher along the bank angle chatter 

arc. 

Figures 6.3.2 to 6.3.4 reveal the zoom dives and climbs which reflect the 

instantaneous changes in altitude and velocity allowed by the energy-state 

approximation. The real-time approximation used here which allows turnling only 

on the max-turn‘locus is clearly‘visible in Figure 6.3.5 which shows how the 

required 90" turn is broken up into an 8.3" initial turn and 81.7" final turn.: 

.Fi'gure 6.3.6 shows the many variations in bank angle along the trajectory.. By 
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the approximation mentioned above turni,ng i-s with o=orn and a=O,for straight 

flight while,-a= Itmin(om,os) during chattering to.maintain average B= 0. The. 

thrust control history -is quite simple:., T=Tmax all ,the ,way tothe .cruise- arc, 

.,TF T, < Tmax while cruising...since the cruise, arc is.an intermediate thrust singular 

arcfollowed .by T= 0 while the bank angle cha:tters and .then ,T=Tmax for the.final 

.,turn.. . . -. : ;: ., 

.;.’ The horizontal ,plane projections of the trajectory .appear in Figures. 6.3;,8- 

6b3.-11. Figure 6.3.U indicates that a ve,ry small portion of the trajectory; . 

time is spent in turning on the max-turn locus as compared to.the straight-fl,ight 

portions. The alpha control history is given in Figure 6.3.12. The altitude- 

Mach number profile of Figure 6.3.13 provides a very interesting view of the 

trajectory. From the initial conditions which are on the max-turn locus, the 

trajectory executes the initial turn followed by a zoom dive to the minimum time 

energy climb path which it follows to the cruise point. After cruising the bank 

angle is allowed to chatter while moving down the max velocity constraint. 

The trajectory leaves the constraint by a zoom climb to the max-turn locus where 

it executes the final turn to reach the end conditions which are also on the 

locus. If the initial or final conditions were not on the locus, the trajectory 

would include zoom dives or climbs to reach the locus. Figure 6.3.14 is an 

altitude-range profile where the rapid changes in altitude are clearly visible 

while Figure 6.2.15 shows the changes in Mach number with range. 

In order to perform the tf iterations of the algorithm presented in Sub- 

section 5.5.2, some assumptions have to be made about the target dynamics. We 

assume that it moves in a straight line at constant altitude and velocity. Then 

the steps in the algorithm are as follows: 

(1) obtain initial estimate of interception point by calculating the 

shortest distance to target path from pursuer 

(2) evaluate tf =time for target to reach this point 

(3) implement (2) - (12) of algorithm in Subsection 5.5.2 

(4) compute pursuer trajectory time (t,) to interception point 

(5) define the difference as f(tf)=tf ltl and perform approximate Newton 

iteration as follows: 

f(L 1 
'old- 

tfnew = tfojd - f'(t, = tl 
old 
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I. (6) go to (3) if accuracy on tf is not met. .' 
(l)- (6) above,trere implemented for two cases, given in F.igures 6i3.16 and 

6.3.17. 'The first case.required six iterations for.'a 180" turn to an accuracy 
of 0.1' sets. The second case (Figure 6:3.17) required 11 iterations.. This'Mas 

.'the worst:case: 90" 'turn to a target tihich has already passed the point tihere 
its 'path is at the shortest distance from pursuer. Hence the two cases indicate 

I i '1 'good' convergence. Note that a better initial estimate of the interception point 

j 
(step (1) abov'e) using proportional nav,igation or some other scheme would reduce 

I the .number of iterations; 
,., 
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/L- Table 6.2.1 Summary of Simulation Results for Trajectories to Cruise Arc 

CASE 

1. Energy-layer 

2. h-layer with 
nonlinear and 
linear feedback 
gain on tany - 
linear gain=O.Ol 
on (H*(E)-H). 

3. h-layer with 
hGAIN = 0.005 

4. r-layer with 
hGAI N =0.005 and 

linear feedback 
gain on a, . . 

Time to cruise arc, 
starting at H= 593.4 m, 
M=0.9, energy= 5482.7 m 
Final range= 182.9 Km 
altitude= 12192 m, 
Mach=2.0, energy= 29949.3 n 

380.9 sets 

387.1 sets 

386.9 sets 

397.2 sets 

REMARKS 

This approximation treats 
h and y as controls and 
holds the derivatives h 
and ; equal to 0. In- 
tuitively, it assumes that 
h and y change much more 
quickly than E. That is, 
h and y are characterized 
by sudden changes (boundary 
layers) for short times 
and almost steady behavior 
for the rest of the time. 

II__-;_.- __.,.. --- 
This approximation treats 
y as a control, assuming 
that y varies faster than 
h does. Linear feedback 
is also used. It has the 
same effect as imposing a 
quadratic penalty cost in 
addition to the other cost 
criteria to penalize h when 
it is far from the optimal 
h-control of the E-layer. 

-. - ..--. .,- . ..--- 
See remarks above. 

The control uses a nonlinear 
SPT control together with 
linear feedback terms which 
represent quadratic penaltie 
for being away from "optimal 
values of h computed as a 
:ontrol in the E-layer and 
)f y computed as a control 
in the h layer. This pro- 
:edure stabilizes the contra 
;cheme and alleviates in- 
accuracy due to numerical 
error in the control com- 
mutation. 
.-_..G._ _...,__ _.^.. _._._ ._._,. ..^ -,. ..,,,_., 
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Table 6.2.1 (cont.) 

C 

L 

I 

CASE __.._.. ---. -- - 
5. y-layer with 

hGAIN=0.005 

YGAIN= o-4 
Ozag 12" 

6. y-layer 
hGAIN = 0.01 
yGAIN=0.6 
O~a~12' 

7. y-layer 
hGAIN = 0.005 

YaIN = 0.4 
0:az12° 

8. y-layer with 90" 
turn on max-turn 
locus 
Osa 2 12" 
0=76" (on locus 

___. 
9. y-layer with 90" 

turn begun at 
initial state 
yG= 0.6/cosa 
hG=0.005 
O;az12° 
u= 76" whileturni 

10. Current practice: 
turn using ~60" 
at constant velo- 
city, constant 
altitude act. to 
M=0.9, constant 
Mach # climb to 
12192 m and 
y=21.8O, constan. 
altitude act. to 
cruise point. 

TIME TO CRUISE ARC 

397.1 sets 

398.1 sets 

~-~ 

397.0 sets 

438.5 sets 

403.0 sets 

472.7 sets 

_ REMARKS 

See remarks in 4. 

See remarks in 4. 

- 

See remarks in 4. 

Path to locus simulated 
using a flip-flop control 
and y constrained to be less 
than 47". Aircraft flies to 
the maximum rate turn locus 
to turn. 

The aircraft executes its 
turn without returning to 
the max rate turn locus. 
This strategy is much more 
efficient than (8) given the 
initial distance from the 
locus (about 3000 m altitude). 

This scheme is typical of 
paths recommended in operations 
manuals for current super- 
sonic aircraft. 

- 



:, .: 

Table 6.2.1 (cont.) 
-.- 

CASE . TIME TO CRUISE ARC REMARKS 
--.--e--e- 

11. Energy layer with 
zoom to max turn 
lccus, 90' turn 
on the locus and 
%COKI back to 
energy layer 
(Parsons solution) 

388.7 sets See remarks for 1. The 
additional 7.8 sets is the 
time taken for a 90" turn 
on the max turn locus. 
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Table 6.2.2 Sumnary of Simulation Results for Terminal 
Trajectories off the Cruise Arc 

1. .Energy-state approxi- 
mation solution: 
down max-velocity 
constraint to E,=12801.6 
m; zoom climb tb 
h=9144 m at constant 
energy; 90" turn at 
E=12801.6 m, h=9144 m --. 

2. Current practice: 
down max-velocity 
constraint until 
h=9144 m and ~'0“; 
level flight at 
h-9144 m to E=12801 m, 
eO.89; 90" turn with 
u, a, u sc as $0 
maintain E=O, h=O, ?=O 

3. Real-time solution: 
down max-velocity 
constraint till 
energy=12801.6 m; 
pull-out with a=a-, 
id=1 till y=y,,, (221"); 
;=O with u=l till 
gnergy=12801.6 m again; 
E=O, a=0 so as to obtain 
y=O at h=9144 m; 90" 
turn with a,.a, u-s.0 as 
$0 maintain E=O, h=O, 
y=o 

4. Best real-time solution: 
down max-velocitv 
constraint till I 
energy=15849.6 m; pull- 
out with a=as, u=l till 
energy=12801.6 m; main- 
tain E=O till y reaches 
Y max (=40”); keep i=O 
with a=0 so as to reach 
h=9144 m with ~'0'; 
90" turn with a, CT, u 
$0 as.to maintain t=O, 
h=O, y=O 

ime from cruise arc: 
nergy=29946.6m,.h=12192-m 
l=2.0 tofinal 'states: 
nqrgy=12801.6 m, M=O:89; 
I=9144 m, ytO",. , 
'ange=46.19'Km “.’ , 

92.5 sets 

118.6 sets 

130.9 sets 

114.6 sets 

Remarks 

‘_ .; 

'See,Parsons (1972) 
for this solution. 
This is a lower 
bound for the optimal 
solution since in- 
stantaneous maneu- 
verability is assumed 
in h and y states 

This scheme is 
typical of paths 
recomnended in oper- 
ations manuals for 
current supersonic 
aircraft. 

This solution at- 
tempts to follow (1) 
as closely as pos- 
sible; y and h dy- 
namics require a 
period of pull-out 
from descent on max- 
velocity constraint. 
The final state yf=O" 
requires y to be 
limited to ymax 
while on 
energy contour. 

This solution is 
better than (3) be- 
cause of earlier 
pull-out from 
descent on Vmax 
constraint 
(3048 m sooner). 



Table 6.2.3 Sumary of Simulation Results for Terminal 
Trajectories off the Cruise Arc, 

Case 

Time from cruise arc: 
Energy=29946.6 m, h= 
12192 m, M=2.0 to final 
states: Energy= 10668 m 
M=0.56, h=9144 m, 
y=O", range=68.86 Km Remarks 

1. Energy-state approximation See Parsons (1972) for 
solution: down max-velocity this solution. This 
constraint to Ef=10668 m; is a lower bound for 
zoom climb to h=9144 m 138.8 sets the optimal solution 
at constant energy; 90" since instantaneous 
turn at E=10668 m, h= maneuverability is 
9144 m. assumed in h and y 

states. 

2. Current practice: down max- This scheme is typical 
velocity constraint until of paths recommended 
h=9144 m and y=O"; level 
flight at h=9144 m to E= 228.0 sets in operations manuals 

for current supersonic 
10668 m, M=0.56; 90" turn 
with y,a,u.So a: to main- 
tain E=O, h=O, y=O. 

aircraft. 

3. Real-time solution: down This solution follows 
max-velocity constraint (1) with a pull-out 
till E=13716 m; pull-out from descent on 
with a=a , u=l till E= constraint 10000 

Vmax 

10668 m,' maintain i=O 
till y,reaches y, x (=59.6"); 169.1 sets ft before reaching 

keep E=O with a=8 so as to 
Ef=10668 m. 

reach h=9144 m with y=O"; 
90" turn with 9,a,u.so as to 
maintain t=O, h=O, y=O 

1. Best real-time solution: This solution is better 
down max-velocity constraint than (3) because of 
till E=15240 m; (earlier 165.2 sets earlier pull-out (1524 
pull-out than in (3)); pull- m sooner than (3)) 
out with a=a , u=l till E= 
10668 m; maiatain I?=0 till 

from descent on Vmax 
constraint 

y reaches Y (=59.6"); 
keep t=O somaxas to reach 
h=9144 m with y=O"; 90" 
turn with o,a,u so as to 
maintain !!=O, ti=O, +=O. 
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Figure 6.2.15 Alpha vs. Time While Turning 
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Figure 6.2.16 Variations in Gamma While Turning 
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Figure 6.2.20 Energy Time-History 
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Figure 6.2.21 Altitude Time-History. h*(E) denotes the desired altitude 
history from the E-boundary layer. 
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Figure 6.2.22 Changes in Velocity with Time 
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computed from the E-boundary layer. 
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h-boundary layer. The act al 6 control used by'the aircraft is ci. 
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Figure 6.3.17 Convergence of tf Iterations (90" turn) 



6.4 Summary of Numerical Simulation Results _ _ . 

Table 6.4.1 Case 1 - Full Trajectory Simulation 
Using SPT Algorithms 

h 
Initial States 

EO = 5.483x1Q3 m 

h0 = 0.594 x lo3 m 

MD = 0.92 

yO 
= 0" 

xO 
= 0 Km 

yO 
= 0 Km 

BO 
= 0" 

Simulation Results _-.---I__ 

The six state simulation 

(minimum) time = 614.0 sets us i 

Part 
-. .._-.--- --.. _-.. .~_ 

I. Climb to 
cruise arc 

II. Minor 
Corrections 
to achieve 
cruise values 
and cruise 
portion 

-.-__ .._.. -----.- 

III .Descent 
from cruise 
arc 

_ ._ . 

Final States 

Ef = 1.067~ lo'+ m 

hf 
= 9.144~10~ m 

Mf = 0.57 

yf = 0" 

Xf = -2.03 Km 

yf 
= 277.8 Km 

Bf = 180" 

X 

k - y 
- - 

--J--1, 

l\, 
,’ Y 

was done in 3 parts as below with tota 1 

ng the SPT algorithms of Section 6.2. 

__.-- - - . - . - ._- . - .  .  . . - -  I  . - - I  - -  . - -  

Optimal Control Law 

Case 9 of Table 6.2.1. 
Ax = 0.43 Km, 
Ay= 180.7 Km 
Figures 6.2.15- 6.2.30 
---- .I ._ ----~ . . .- . -.- 

See Section 6.2.2. 
Ax = 0, Ay= 64.4 Km 

____. ._-- .;-.-_.--. --..~---. 

Case 4 of Table 6.2.3 
Ax= -2.46 Km, 
Ay=32.7 Km 
Figures 6.'2.31- 6.2.43 

-- ..^ - __-. 

.-. _ _.-. .- 
Minimum Time (set) 

399.3 

109.3 

105.4 

_ __ _ .._ -. ._- 
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: T.&@e ,.:6 T,,$. 2 -. to Arc i..:Cgs,e,,Z @imb Cruise Simulatio,n: 
?U-S‘ing SPT Algori.th,m' ., .,, ,; ,, 

., 

Initial States.;. . . Final States.) :; : 
_'.. : ;. : _. 

Same as in Case 1 Ef = &995.x:lOQl :. 

hf.= 1;219,x lo4 m 

Mf = 2.00 = : 

Xf = 0.43 Km _ L' 

.' Yf = 190.78 Km 

L .' Bf 
=goo '.:: 

Simulation Results --- 

This is a six state simuTation and consists of Part 1 of Table 6.4.1 
;.!, ,. :.:I : , 'J . . 
: .- 

plus "the minor correcti,gn.s to achieve cruise values" of Part;:, of Table 
.,Y‘ (, " '. ,, ,., ' 

6,4.1 which took 17.2 sets and covered 10.04 Km. Hence total (minimum) 

time=416.5 sets. The SPT algorithm of Section 6.2 was used. 



I PD ii 

Table 6.4.3 Case 3 - Descent from Cruise Arc Simulation 
Using SPT Algorithm (Mf = 0.56) 

Initial States; 

'E. = 2.995x 10” m 

‘, ho-= 1.2i9xi04 m 

Fb = 2.00 

yo. 
= 0” 

xO = 0 Km 

YO 
=oKm 

BO 
40" 

Final States 

Ef * 1.067 x lo’+ m 

hf ; 9.144 x 103, m 

Simu7ation Results ---- 

This six state simulation consists of Part 3 of Table 6.4.1 taking 

105.4 sets and uses the SPT algorithm of Section 6.2. 

Mf = 0.56 

Yf 
= 00 

Xf = 32.7 Km 

Yf = 2.46 Km 

Bf = 90" 

317 



Table 6.4.4 Case 4 - Descent from Cruise Arc Simulation 
Using SPT Algorithm.(Mf = 0.89) 

Initial States 

Same as in 

Case 3 

(Table 6.4.3) 

Final States 

Ef = 1.280~ lo4 m 

hf = 9.144x103 m 

Mf = 0.89 

Yf = 0" 

Xf = 37.4 Km 

Yf = 2.46 Km 

Bf = 90" 

Simulation Results 

This six state simulation uses the same algorithm used in Table 6.4.3 

and is described in detail as Case 4 of Table 6.2.2. Total (minimum) time 

is 99.85 sets for a range of 37.5 Km. 
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Table 6.4.5 Case 5 - Target Interception (180" turn) 
Using the Energy-State Approximation 

Pursuer States 

EO = 6.706~10~ m 

h,, = 3.176~10~ m 

MO = 0.8 

YO 
= 00 

xO = 0 Km 

Ef = 1.707~ lo4 m 

hf = 9.144x103 m 

Mf = 1.3 

yf = 0" 

Xf = 46.6 Km 

YO = 0 Km 
yf = 212.0 Km 

f30 
= 0" 

Bf = 180" 

States Target -- 

E. = 1.600~10~ m 

hO = 9.144x103 m 

Ef = 1.600~ lo4 m 

hf = 9.144x103 m 

MO = 1.21 Mf = 1.21 

yO 
= 0" 

Yf 
= 0" 

xO = 212.0 Km 
Xf = 46.6 Km 

YO = 212.0 Km 
yf = 212.0 Km 

8O = 180" 
Bf = 180" 

X 

Simulation Results 

This simulation uses the energy-state approximation 
(4 state model of Section 5.5). The algorithm of Sec- 
tion 6.3 is used to iterate on tf which is the time to 
interception. Six iterations were required (Figure 
6.3.16) for convergence to an accuracy of 0.1 sets to 
yield a minimum-time trajectory taking 452.1 sets to 
interception. The trajectory reflects the energy-state 
approximation by the zoom maneuvers in altitude and velocity--the whole trajec- 
tory is similar in character to that represented by Figures 6.3.1- 6.3.15 
which used different initial and final conditions from those stated above, 
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Table 6.4.6 Case 6 - Ta.rget Interception (90' turn) 
Using the Ene.rgy-State Approximation 

Pursuer States 

EO = 6.706~10" m Ef = 1.707~10~ m 

ho = 3.176~10~ m hf = 9.144x103 m 

MO = 0.8 Mf = 1.3 

YO 
= 0" 

yf 
= 0" 

xO = 0 Km Xf = 212.0 Km 

YO = 0 Km yf = 294.6 Km 

$0 
= 0" 

Bf = 90" 

Target States 

E. = 1.600~ lo4 m Ef = 1.600~10~ m 

hO = 9.144x103 m hf = 9.144x103 m 

MO = 1.21 Mf = 1.21 

y. = 0" yf 
= 0" 

xO = 212.0 Km Xf = 212.0 Km 

YO = 42.4 Km yf = 294.8 Km 

BO = 90" Bf = 90" 

Taut- - _ 

Simulation Results 

This simulation is similar to that of Table 
6.4.5 in that the energy-state approximation 
is used and the same algorithm (Section 6.3) Id 

- 

B 

Y 
is also used but differs in the initial and Pursuer 

final states. 11 iterations were required (Figure 6.3.17) and the minimum- 
time trajectory takes 690.3 sets to interception. 
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CHAPTER 7 

CONCLUSIONS 

This report has described work performed on the development of a hierarchi- 

cal real-time algorithm .for optimal three-dimensional aircraft maneuvers using 

Singular Perturbation Theory (SPT). New theoretical results justify and develop 

systematic methods for real-time computation of nonlinear feedback controls.by 

means of SPT and provide an assessment of the accuracy of the resulting SPT con- 

trol. Practical results apply SPT to obtain a real-time feedback law for the 

three-dimensional minimum time long range intercept problem for an F-4 aircraft 

model (six state, three control variable, point mass model). Nonlinear feed- 

back laws are presented for computing the optimal control variables u (throttle), 

u (bank angle) and c1 (angle-of-attack) as a function of target and pursuer air- 

craft states and desired terminal conditions. The SPT control law results in a 

hierarchical nonlinear feedback structure. It is supplemented by predictive 

feedback terms for small deviations from the optimal trajectory and for maneuvers 

near the terminal time where the SPT approximation is not valid. The F-4 simu- 

lation results using the SPT control law show minor sacrifice in accuracy over 

the off-line optimization results, in the long range intercept case. 

A real-time capability assessment of the SPT algorithm on a microcomputer 

has been performed and based on the results presented in this report, it may be 

concluded that real-time, three-dimensional long range aircraft trajectory 

optimization is possible using SPT. The implementation of this algorithm on a 

microcomputer is estimated to result in a control update cycle time of 27 msec, 

which is almost four times smaller than the common radar sampling interval of 

100 msec. The storage and computational requirements of the algorithm are found 

to be well suited for on-board realytime implementation on a microcomputer. 

The accuracy of the SPT solution is analyzed and it is shown how "continua- 

tion-type" methods may be used to obtain exact optimal trajectories starting 

from the SPT solution. The advantage of using predictive terms to supplement 

the SPT feedback laws is demonstrated for the aircraft trajectory optimization 

problem. In particular, it is shown that the SPT approximation breaks down near 

the terminal phase and must be corrected by "continuation" and Generalized 

Multiple Scale (GMS) methods. 
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